810 research outputs found

    Multipole Amplitudes of Pion Photoproduction on Nucleons up to 2GeV within Dispersion Relations and Unitary Isobar Model

    Full text link
    Two approaches for analysis of pion photo- and electroproduction on nucleons in the resonance energy region are checked at Q2=0Q^2=0 using the results of GWU(VPI) partial-wave analysis of photoproduction data. The approaches are based on dispersion relations and unitary isobar model. Within dispersion relations good description of photoproduction multipoles is obtained up to W=1.8GeVW=1.8 GeV. Within unitary isobar model, modified with increasing energy by incorporation of Regge poles, and with unified Breit-Wigner parametrization of resonance contributions, good description of photoproduction multipoles is obtained up to W=2GeVW=2 GeV.Comment: 23 pages, LaTe

    Spherical collapse with dark energy

    Full text link
    I discuss the work of Maor and Lahav [1], in which the inclusion of dark energy into the spherical collapse formalism is reviewed. Adopting a phenomenological approach, I consider the consequences of - a) allowing the dark energy to cluster, and, b) including the dark energy in the virialization process. Both of these issues affect the final state of the system in a fundamental way. The results suggest a potentially differentiating signature between a true cosmological constant and a dynamic form of dark energy. This signature is unique in the sense that it does not depend on a measurement of the value of the equation of state of dark energy.Comment: To appear in the proceedings of the ``Peyresq Physics 10" Workshop, 19 - 24 June 2005, Peyresq, Franc

    A Hydrodynamical Approach to CMB mu-distortions

    Full text link
    Spectral distortion of the cosmic microwave background provides a unique opportunity to probe primordial perturbations on very small scales by performing large-scale measurements. We discuss in a systematic and pedagogic way all the relevant physical phenomena involved in the production and evolution of the mu-type spectral distortion. Our main results agree with previous estimates (in particular we show that a recently found factor of 3/4 arises from relativistic corrections to the wave energy). We also discuss several subleading corrections such as adiabatic cooling and the effects of bulk viscosity, baryon loading and photon heat conduction. Finally we calculate the transfer function for mu-distortions between the end of the mu-era and now.Comment: 45 page

    Relativistic entanglement in single-particle quantum states using Non-Linear entanglement witnesses

    Full text link
    In this study, the spin-momentum correlation of one massive spin-1/2 and spin-1 particle states, which are made based on projection of a relativistic spin operator into timelike direction is investigated. It is shown that by using Non-Linear entanglement witnesses (NLEWs), the effect of Lorentz transformation would decrease both the amount and the region of entanglement.Comment: 16 pages, 2 figures; to be published in Quantum Inf Process, 10.1007/s11128-011-0289-z (2011

    Spontaneous Magnetization of the O(3) Ferromagnet at Low Temperatures

    Full text link
    We investigate the low-temperature behavior of ferromagnets with a spontaneously broken symmetry O(3) →\to O(2). The analysis is performed within the perspective of nonrelativistic effective Lagrangians, where the dynamics of the system is formulated in terms of Goldstone bosons. Unlike in a Lorentz-invariant framework (chiral perturbation theory), where loop graphs are suppressed by two powers of momentum, loops involving ferromagnetic spin waves are suppressed by three momentum powers. The leading coefficients of the low-temperature expansion for the partition function are calculated up to order p10p^{10}. In agreement with Dyson's pioneering microscopic analysis of the cubic ferromagnet, we find that, in the spontaneous magnetization, the magnon-magnon interaction starts manifesting itself only at order T4T^4. The striking difference with respect to the low-temperature properties of the O(3) antiferromagnet is discussed from a unified point of view, relying on the effective Lagrangian technique.Comment: 23 pages, 4 figure

    The Two-Nucleon Potential from Chiral Lagrangians

    Get PDF
    Chiral symmetry is consistently implemented in the two-nucleon problem at low-energy through the general effective chiral lagrangian. The potential is obtained up to a certain order in chiral perturbation theory both in momentum and coordinate space. Results of a fit to scattering phase shifts and bound state data are presented, where satisfactory agreement is found for laboratory energies up to about 100 Mev.Comment: Postscript file; figures available by reques

    New Black Hole Solutions in Brans-Dicke Theory of Gravity

    Get PDF
    Existence check of non-trivial, stationary axisymmetric black hole solutions in Brans-Dicke theory of gravity in different direction from those of Penrose, Thorne and Dykla, and Hawking is performed. Namely, working directly with the known explicit spacetime solutions in Brans-Dicke theory, it is found that non-trivial Kerr-Newman-type black hole solutions different from general relativistic solutions could occur for the generic Brans-Dicke parameter values -5/2\leq \omega <-3/2. Finally, issues like whether these new black holes carry scalar hair and can really arise in nature and if they can, what the associated physical implications would be are discussed carefully.Comment: 20 pages, no figure, Revtex, version to appear in Phys. Rev.

    Charge-Symmetry Breaking and the Two-Pion-Exchange Two-Nucleon Interaction

    Full text link
    Charge-symmetry breaking in the nucleon-nucleon force is investigated within an effective field theory, using a classification of isospin-violating interactions based on power-counting arguments. The relevant charge-symmetry-breaking interactions corresponding to the first two orders in the power counting are discussed, including their effects on the 3He-3H binding-energy difference. The static charge-symmetry-breaking potential linear in the nucleon-mass difference is constructed using chiral perturbation theory. Explicit formulae in momentum and configuration spaces are presented. The present work completes previously obtained results.Comment: 15 pages, 2 figure

    Lectures on Chiral Disorder in QCD

    Full text link
    I explain the concept that light quarks diffuse in the QCD vacuum following the spontaneous breakdown of chiral symmetry. I exploit the striking analogy to disordered electrons in metals, identifying, among others, the universal regime described by random matrix theory, diffusive regime described by chiral perturbation theory and the crossover between these two domains.Comment: Lectures given at the Cargese Summer School, August 6-18, 200

    Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV I: pion-induced results and hadronic parameters

    Full text link
    We present a nucleon resonance analysis by simultaneously considering all pion- and photon-induced experimental data on the final states gamma N, pi N, 2 pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The omega N production mechanism is dominated by large P_{11}(1710) and P_{13}(1900) contributions. In this first part, we present the results of the pion-induced reactions and the extracted resonance and background properties with emphasis on the difference between global and purely hadronic fits.Comment: 54 pages, 26 figures, discussion extended, typos corrected, references updated, to appear in Phys. Rev.
    • …
    corecore