1,426 research outputs found
Optimal branching asymmetry of hydrodynamic pulsatile trees
Most of the studies on optimal transport are done for steady state regime
conditions. Yet, there exists numerous examples in living systems where supply
tree networks have to deliver products in a limited time due to the pulsatile
character of the flow. This is the case for mammals respiration for which air
has to reach the gas exchange units before the start of expiration. We report
here that introducing a systematic branching asymmetry allows to reduce the
average delivery time of the products. It simultaneously increases its
robustness against the unevitable variability of sizes related to
morphogenesis. We then apply this approach to the human tracheobronchial tree.
We show that in this case all extremities are supplied with fresh air, provided
that the asymmetry is smaller than a critical threshold which happens to fit
with the asymmetry measured in the human lung. This could indicate that the
structure is adjusted at the maximum asymmetry level that allows to feed all
terminal units with fresh air.Comment: 4 pages, 4 figure
Particle Energization in an Expanding Magnetized Relativistic Plasma
Using a 2-1/2-dimensional particle-in-cell (PIC) code to simulate the
relativistic expansion of a magnetized collisionless plasma into a vacuum, we
report a new mechanism in which the magnetic energy is efficiently converted
into the directed kinetic energy of a small fraction of surface particles. We
study this mechanism for both electron-positron and electron-ion (mi/me=100, me
is the electron rest mass) plasmas. For the electron-positron case the pairs
can be accelerated to ultra-relativistic energies. For electron-ion plasmas
most of the energy gain goes to the ions.Comment: 7 pages text plus 5 figures, accepted for publication by Physical
Review Letter
Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange NMR
We demonstrate a minimally invasive nuclear magnetic resonance (NMR)
technique that enables determination of the surface-area-to-volume ratio (S/V)
of soft porous materials from measurements of the diffusive exchange of
laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the
solid phase. We apply this NMR technique to porous polymer samples and find
approximate agreement with destructive stereological measurements of S/V
obtained with optical confocal microscopy. Potential applications of
laser-polarized xenon interphase exchange NMR include measurements of in vivo
lung function in humans and characterization of gas chromatography columns.Comment: 14 pages of text, 4 figure
A complementary view on the growth of directory trees
Trees are a special sub-class of networks with unique properties, such as the
level distribution which has often been overlooked. We analyse a general tree
growth model proposed by Klemm {\em et. al.} (2005) to explain the growth of
user-generated directory structures in computers. The model has a single
parameter which interpolates between preferential attachment and random
growth. Our analysis results in three contributions: First, we propose a more
efficient estimation method for based on the degree distribution, which is
one specific representation of the model. Next, we introduce the concept of a
level distribution and analytically solve the model for this representation.
This allows for an alternative and independent measure of . We argue that,
to capture real growth processes, the estimations from the degree and the
level distributions should coincide. Thus, we finally apply both
representations to validate the model with synthetically generated tree
structures, as well as with collected data of user directories. In the case of
real directory structures, we show that measured from the level
distribution are incompatible with measured from the degree distribution.
In contrast to this, we find perfect agreement in the case of simulated data.
Thus, we conclude that the model is an incomplete description of the growth of
real directory structures as it fails to reproduce the level distribution. This
insight can be generalised to point out the importance of the level
distribution for modeling tree growth.Comment: 16 pages, 7 figure
Interplay between geometry and flow distribution in an airway tree
Uniform fluid flow distribution in a symmetric volume can be realized through
a symmetric branched tree. It is shown here, however, that the flow
partitioning can be highly sensitive to deviations from exact symmetry if
inertial effects are present. This is found by direct numerical simulation of
the Navier-Stokes equations in a 3D tree geometry. The flow asymmetry is
quantified and found to depend on the Reynolds number. Moreover, for a given
Reynolds number, we show that the flow distribution depends on the aspect ratio
of the branching elements as well as their angular arrangement. Our results
indicate that physiological variability should be severely restricted in order
to ensure uniform fluid distribution in a tree. This study suggests that any
non-uniformity in the air flow distribution in human lungs should be influenced
by the respiratory conditions, rest or hard exercise
Energy Loss of a Heavy Fermion in an Anisotropic QED Plasma
We compute the leading-order collisional energy loss of a heavy fermion
propagating in a QED plasma with an electron distribution function which is
anisotropic in momentum space. We show that in the presence of such
anisotropies there can be a significant directional dependence of the heavy
fermion energy loss with the effect being quite large for highly-relativistic
velocities. We also repeat the analysis of the isotropic case more carefully
and show that the final result depends on the intermediate scale used to
separate hard and soft contributions to the energy loss. We then show that the
canonical isotropic result is obtained in the weak-coupling limit. For
intermediate-coupling we use the residual scale dependence as a measure of our
theoretical uncertainty. We also discuss complications which could arise due to
the presence of unstable soft photonic modes and demonstrate that the
calculation of the energy loss is safe.Comment: 19 pages, 18 figures. v2 - Correction to normalization of numerical
results; some figures modified as a result; discussion of role of unstable
modes added along with two new figure
Leadership and decision-making practices in public versus private universities in Pakistan
The goal of this study is to examine differences in leadership and decision-making practices in public and private universities in Pakistan, with a focus on transformational leadership (TL) and participative decision-making (PDM). We conducted semi-structured interviews with 46 deans and heads of department from two public and two private universities in Pakistan. Our findings indicate that leadership and decision-making practices are different in public and private universities. While differences were observed in all six types of TL-behaviour, the following three approaches emerged to be crucial in both public and private universities: (1) articulating a vision, (2) fostering the acceptance of group goals, and (3) high-performance expectations. In terms of PDM, deans and heads of department in public and private universities adopt a collaborative approach. However, on a practical level this approach is limited to teacher- and student-related matters. Overall, our findings suggest that the leadership and decision-making practices in Pakistani public and private universities are transformational and participative in nature
Gradient microfluidics enables rapid bacterial growth inhibition testing
Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask)
- …