46,711 research outputs found
Time-Domain N-continuous GFDM
Generalized frequency division multiplexing (GFDM) has been a candidate
multicarrier scheme in the 5th generation cellular networks for its flexibility
of transmitter filter in time and frequency. However, for the circularly shaped
transmitter filter, GFDM provides limited performance gain of sidelobe
suppression. In this paper, we propose a scheme, called time-domain
N-continuous GFDM (TD-NC-GFDM), to reduce the discontinuities caused by the
GFDM transmitter filter and achieve promising sidelobe suppression gain. Based
on time-domain N-continuous orthogonal frequency devision multiplexing
(TD-NC-OFDM), TD-NC-GFDM signal can be obtained by superposing a smooth signal
in the time domain. The smooth signal is linearly combined by basis signals in
a new basis set related to GFDM transmitter waveform. To eliminate the
interference caused by the smooth signal, two solutions are proposed. Firstly,
a signal recovery algorithm for reception is adopted at the cost of high
complexity. Thus, secondly, to simplify the TD-NC-GFDM receiver, a
low-interference TD-NC-GFDM is proposed by redesigning the basis signals. A
soft truncation of the basis signals in TD-NC-GFDM is given to design the basis
signals in the low-interference TD-NC-GFDM. Then, the smooth signal is aligned
with the beginning of the GFDM symbol and is added in the front part of the
GFDM symbol. Moreover, for a big number of GFDM subsymbols, theoretical
analysis proves that the signal-to-interference ratio (SIR) in TD-NC-GFDM is
much higher than that in TD-NC-OFDM. Simulation results shows that TD-NC-GFDM
can obtain significant sidelobe suppression performance as well as the
low-interference TD-NC-GFDM, which can achieve the same BER performance as the
original GFDM.Comment: single column, 19 pages, 10 figure
- …