6,899 research outputs found

    Correlation effects in the electronic structure of the Ni-based superconducting KNi2S2

    Get PDF
    The LDA plus Gutzwiller variational method is used to investigate the groundstate physical properties of the newly discovered superconducting KNi2S2. Five Ni-3d Wannier-orbital basis are constructed by the density-functional theory, to combine with local Coulomb interaction to describe the normal state electronic structure of Ni-based superconductor. The band structure and the mass enhanced are studied based on a multiorbital Hubbard model by using Gutzwiller approximation method. Our results indicate that the correlation effects lead to the mass enhancement of KNi2S2. Different from the band structure calculated from the LDA results, there are three energy bands across the Fermi level along the X-Z line due to the existence of the correlation effects, which induces a very complicated Fermi surface along the X-Z line. We have also investigated the variation of the quasi-particle weight factor with the hole or electron doping and found that the mass enhancement character has been maintained with the doping.Comment: 12 pages, 6 figure

    Anderson Impurity in Helical Metal

    Get PDF
    We use a trial wave function to study the spin-1/2 Kondo effect of a helical metal on the surface of a three-dimensional topological insulator. While the impurity spin is quenched by conduction electrons, the spin-spin correlation of the conduction electron and impurity is strongly anisotropic in both spin and spatial spaces. As a result of strong spin-orbit coupling, the out-of-plane component of the impurity spin is found to be fully screened by the orbital angular momentum of the conduction electrons.Comment: The published versio

    Quantum information processing architecture with endohedral fullerenes in a carbon nanotube

    Full text link
    A potential quantum information processor is proposed using a fullerene peapod, i.e., an array of the endohedral fullerenes 15N@C60 or 31P@C60 contained in a single walled carbon nanotube (SWCNT). The qubits are encoded in the nuclear spins of the doped atoms, while the electronic spins are used for initialization and readout, as well as for two-qubit operations.Comment: 8 pages, 8 figure

    A Complete Reference of the Analytical Synchrotron External Shock Models of Gamma-Ray Bursts

    Full text link
    Gamma-ray bursts are most luminous explosions in the universe. Their ejecta are believed to move towards Earth with a relativistic speed. The interaction between this "relativistic jet" and a circum burst medium drives a pair of (forward and reverse) shocks. The electrons accelerated in these shocks radiate synchrotron emission to power the broad-band afterglow of GRBs. The external shock theory is an elegant theory, since it invokes a limit number of model parameters, and has well predicted spectral and temporal properties. On the other hand, depending on many factors (e.g. the energy content, ambient density profile, collimation of the ejecta, forward vs. reverse shock dynamics, and synchrotron spectral regimes), there is a wide variety of the models. These models have distinct predictions on the afterglow decaying indices, the spectral indices, and the relations between them (the so-called "closure relations"), which have been widely used to interpret the rich multi-wavelength afterglow observations. This review article provides a complete reference of all the analytical synchrotron external shock afterglow models by deriving the temporal and spectral indices of all the models in all spectral regimes, including some regimes that have not been published before. The review article is designated to serve as a useful tool for afterglow observers to quickly identify relevant models to interpret their data. The limitations of the analytical models are reviewed, with a list of situations summarized when numerical treatments are needed.Comment: 119 pages, 45 figures, invited review accepted for publication in New Astronomy Review
    • …
    corecore