600 research outputs found

    Utilizing microblogs for improving automatic news high-lights extraction

    Get PDF

    Gibberish, assistant, or master? Using tweets linking to news for extractive single-document summarization

    Get PDF
    Single-document summarization is a challenging task. In this paper, we explore effective ways using the tweets link-ing to news for generating extractive summary of each doc-ument. We reveal the very basic value of tweets that can be utilized by regarding every tweet as a vote for candidate sentences. Base on such finding, we resort to unsupervised summarization models by leveraging the linking tweets to master the ranking of candidate extracts via random walk on a heterogeneous graph. The advantage is that we can use the linking tweets to opportunistically “supervise ” the summa-rization with no need of reference summaries. Furthermore, we analyze the influence of the volume and latency of tweets on the quality of output summaries since tweets come af-ter news release. Compared to truly supervised summarizer unaware of tweets, our method achieves significantly better results with reasonably small tradeoff on latency; compared to the same using tweets as auxiliary features, our method is comparable while needing less tweets and much shorter time to achieve significant outperformance

    Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database

    Full text link
    Radiologists in their daily work routinely find and annotate significant abnormalities on a large number of radiology images. Such abnormalities, or lesions, have collected over years and stored in hospitals' picture archiving and communication systems. However, they are basically unsorted and lack semantic annotations like type and location. In this paper, we aim to organize and explore them by learning a deep feature representation for each lesion. A large-scale and comprehensive dataset, DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and size measurements of over 32K lesions. To model their similarity relationship, we leverage multiple supervision information including types, self-supervised location coordinates and sizes. They require little manual annotation effort but describe useful attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings with a sequential sampling strategy to depict their hierarchical similarity structure. Experiments show promising qualitative and quantitative results on lesion retrieval, clustering, and classification. The learned embeddings can be further employed to build a lesion graph for various clinically useful applications. We propose algorithms for intra-patient lesion matching and missing annotation mining. Experimental results validate their effectiveness.Comment: Accepted by CVPR2018. DeepLesion url adde

    Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation

    Full text link
    Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change. Simulating the response of the public and forecasting the potential impact has become increasingly important. However, existing methods for simulating such phenomena encounter challenges concerning their efficacy and efficiency in capturing the behaviors of social movement participants. In this paper, we introduce a hybrid framework HiSim for social media user simulation, wherein users are categorized into two types. Core users are driven by Large Language Models, while numerous ordinary users are modeled by deductive agent-based models. We further construct a Twitter-like environment to replicate their response dynamics following trigger events. Subsequently, we develop a multi-faceted benchmark SoMoSiMu-Bench for evaluation and conduct comprehensive experiments across real-world datasets. Experimental results demonstrate the effectiveness and flexibility of our method.Comment: Accepted to findings of ACL 202

    Using tweets to help sentence compression for news highlights generation

    Get PDF
    We explore using relevant tweets of a given news article to help sentence com-pression for generating compressive news highlights. We extend an unsupervised dependency-tree based sentence compres-sion approach by incorporating tweet in-formation to weight the tree edge in terms of informativeness and syntactic impor-tance. The experimental results on a pub-lic corpus that contains both news arti-cles and relevant tweets show that our pro-posed tweets guided sentence compres-sion method can improve the summariza-tion performance significantly compared to the baseline generic sentence compres-sion method.

    DxFormer: A Decoupled Automatic Diagnostic System Based on Decoder-Encoder Transformer with Dense Symptom Representations

    Full text link
    Diagnosis-oriented dialogue system queries the patient's health condition and makes predictions about possible diseases through continuous interaction with the patient. A few studies use reinforcement learning (RL) to learn the optimal policy from the joint action space of symptoms and diseases. However, existing RL (or Non-RL) methods cannot achieve sufficiently good prediction accuracy, still far from its upper limit. To address the problem, we propose a decoupled automatic diagnostic framework DxFormer, which divides the diagnosis process into two steps: symptom inquiry and disease diagnosis, where the transition from symptom inquiry to disease diagnosis is explicitly determined by the stopping criteria. In DxFormer, we treat each symptom as a token, and formalize the symptom inquiry and disease diagnosis to a language generation model and a sequence classification model respectively. We use the inverted version of Transformer, i.e., the decoder-encoder structure, to learn the representation of symptoms by jointly optimizing the reinforce reward and cross entropy loss. Extensive experiments on three public real-world datasets prove that our proposed model can effectively learn doctors' clinical experience and achieve the state-of-the-art results in terms of symptom recall and diagnostic accuracy.Comment: 7 pages, 4 figures, 3 table

    Placement and Resource Allocation of Wireless-Powered Multiantenna UAV for Energy-Efficient Multiuser NOMA

    Full text link
    This paper investigates a new downlink nonorthogonal multiple access (NOMA) system, where a multiantenna unmanned aerial vehicle (UAV) is powered by wireless power transfer (WPT) and serves as the base station for multiple pairs of ground users (GUs) running NOMA in each pair. An energy efficiency (EE) maximization problem is formulated to jointly optimize the WPT time and the placement for the UAV, and the allocation of the UAV's transmit power between different NOMA user pairs and within each pair. To efficiently solve this nonconvex problem, we decompose the problem into three subproblems using block coordinate descent. For the subproblem of intra-pair power allocation within each NOMA user pair, we construct a supermodular game with confirmed convergence to a Nash equilibrium. Given the intra-pair power allocation, successive convex approximation is applied to convexify and solve the subproblem of WPT time allocation and inter-pair power allocation between the user pairs. Finally, we solve the subproblem of UAV placement by using the Lagrange multiplier method. Simulations show that our approach can substantially outperform its alternatives that do not use NOMA and WPT techniques or that do not optimize the UAV location.Comment: 15 pages, 11 figures, Accepted by IEEE Transactions on Wireless Communication

    Using content-level structures for summarizing microblog repost trees

    Get PDF
    A microblog repost tree provides strong clues on how an event described therein develops. To help social media users capture the main clues of events on mi-croblogging sites, we propose a novel re-post tree summarization framework by ef-fectively differentiating two kinds of mes-sages on repost trees called leaders and followers, which are derived from content-level structure information, i.e., contents of messages and the reposting relations. To this end, Conditional Random Fields (CRF) model is used to detect leaders across repost tree paths. We then present a variant of random-walk-based summariza-tion model to rank and select salient mes-sages based on the result of leader detec-tion. To reduce the error propagation cas-caded from leader detection, we improve the framework by enhancing the random walk with adjustment steps for sampling from leader probabilities given all the re-posting messages. For evaluation, we construct two annotated corpora, one for leader detection, and the other for repost tree summarization. Experimental results confirm the effectiveness of our method.
    corecore