4,478 research outputs found
Enhanced flight performance by genetic manipulation of wing shape in Drosophila
Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals
Production of a chromium Bose-Einstein condensate
The recent achievement of Bose-Einstein condensation of chromium atoms [1]
has opened longed-for experimental access to a degenerate quantum gas with
long-range and anisotropic interaction. Due to the large magnetic moment of
chromium atoms of 6 {}B, in contrast to other Bose- Einstein condensates
(BECs), magnetic dipole-dipole interaction plays an important role in a
chromium BEC. Many new physical properties of degenerate gases arising from
these magnetic forces have been predicted in the past and can now be studied
experimentally. Besides these phenomena, the large dipole moment leads to a
breakdown of standard methods for the creation of a chromium BEC. Cooling and
trapping methods had to be adapted to the special electronic structure of
chromium to reach the regime of quantum degeneracy. Some of them apply
generally to gases with large dipolar forces. We present here a detailed
discussion of the experimental techniques which are used to create a chromium
BEC and alow us to produce pure condensates with up to {} atoms in an
optical dipole trap. We also describe the methods used to determine the
trapping parameters.Comment: 17 pages, 9 figure
Synthetic three-dimensional atomic structures assembled atom by atom
We demonstrate the realization of large, fully loaded, arbitrarily-shaped
three-dimensional arrays of single atoms. Using holographic methods and
real-time, atom-by-atom, plane-by-plane assembly, we engineer atomic structures
with up to 72 atoms separated by distances of a few micrometres. Our method
allows for high average filling fractions and the unique possibility to obtain
defect-free arrays with high repetition rates. These results find immediate
application for the quantum simulation of spin Hamiltonians using Rydberg atoms
in state-of-the-art platforms, and are very promising for quantum-information
processing with neutral atoms.Comment: 5 pages, 3 figure
Programmatic Evaluation of a Combined Antigen and Antibody Test for Rapid HIV Diagnosis in a Community and Sexual Health Clinic Screening Programme
Background
A substantial proportion of HIV-infected individuals in the UK are unaware of their status and late presentations continue, especially in low prevalence areas. Fourth generation antigen/antibody rapid test kits could facilitate earlier diagnosis of HIV in non-clinical settings but lack data on performance under programmatic conditions.
Methods and Findings
We evaluated the performance of Determine HIV-1/2 Ag/Ab Combo Test (Determine Combo), a rapid test with indicators for both HIV antibodies and p24 antigen, in participants recruited from community outreach and hospital-based sexual health clinics. HIV infection was confirmed using laboratory enzyme-linked immunosorbent assay (EIA), Line Immuno Assay (LIA) and quantitative polymerase chain reaction (PCR). In total, 953 people underwent HIV testing. HIV antibody (Ab) prevalence was 1.8% (17/953). Four false positive rapid tests were identified: two antibody and two p24 antigen (Ag) reactions. Of participants diagnosed as HIV Ab positive, 2/17 (12%) were recent seroconverters based on clinical history and HIV antibody avidity test results. However, none of these were detected by the p24 antigen component of the rapid test kit. There were no other true positive p24 Ag tests.
Conclusion
These data lend support to an increasing body of evidence suggesting that 4th generation rapid HIV tests have little additional benefit over 3rd generation HIV kits for routine screening in low prevalence settings and have high rates of false positives. In order to optimally combine community-based case-finding among hard-to-reach groups with reliable and early diagnosis 3rd generation kits should be primarily used with laboratory testing of individuals thought to be at risk of acute HIV infection. A more reliable point of care diagnostic is required for the accurate detection of acute HIV infection under programmatic conditions
Cooperative coupling of ultracold atoms and surface plasmons
Cooperative coupling between optical emitters and light fields is one of the
outstanding goals in quantum technology. It is both fundamentally interesting
for the extraordinary radiation properties of the participating emitters and
has many potential applications in photonics. While this goal has been achieved
using high-finesse optical cavities, cavity-free approaches that are broadband
and easy to build have attracted much attention recently. Here we demonstrate
cooperative coupling of ultracold atoms with surface plasmons propagating on a
plane gold surface. While the atoms are moving towards the surface they are
excited by an external laser pulse. Excited surface plasmons are detected via
leakage radiation into the substrate of the gold layer. A maximum Purcell
factor of is reached at an optimum distance of
from the surface. The coupling leads to the observation of
a Fano-like resonance in the spectrum.Comment: 9 pages, 4 figure
Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells
LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.Peer ReviewedPostprint (published version
Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides
Pseudomonads are cosmopolitan microorganisms able to produce a wide array of specialized metabolites. These molecules allow Pseudomonas to scavenge nutrients, sense population density and enhance or inhibit growth of competing microorganisms. However, these valuable metabolites are typically characterized one-molecule–one-microbe at a time, instead of being inventoried in large numbers. To index and map the diversity of molecules detected from these organisms, 260 strains of ecologically diverse origins were subjected to mass-spectrometry-based molecular networking. Molecular networking not only enables dereplication of molecules, but also sheds light on their structural relationships. Moreover, it accelerates the discovery of new molecules. Here, by indexing the Pseudomonas specialized metabolome, we report the molecular-networking-based discovery of four molecules and their evolutionary relationships: a poaeamide analogue and a molecular subfamily of cyclic lipopeptides, bananamides 1, 2 and 3. Analysis of their biosynthetic gene cluster shows that it constitutes a distinct evolutionary branch of the Pseudomonas cyclic lipopeptides. Through analysis of an additional 370 extracts of wheat-associated Pseudomonas, we demonstrate how the detailed knowledge from our reference index can be efficiently propagated to annotate complex metabolomic data from other studies, akin to the way in which newly generated genomic information can be compared to data from public databases
Intrinsic gain modulation and adaptive neural coding
In many cases, the computation of a neural system can be reduced to a
receptive field, or a set of linear filters, and a thresholding function, or
gain curve, which determines the firing probability; this is known as a
linear/nonlinear model. In some forms of sensory adaptation, these linear
filters and gain curve adjust very rapidly to changes in the variance of a
randomly varying driving input. An apparently similar but previously unrelated
issue is the observation of gain control by background noise in cortical
neurons: the slope of the firing rate vs current (f-I) curve changes with the
variance of background random input. Here, we show a direct correspondence
between these two observations by relating variance-dependent changes in the
gain of f-I curves to characteristics of the changing empirical
linear/nonlinear model obtained by sampling. In the case that the underlying
system is fixed, we derive relationships relating the change of the gain with
respect to both mean and variance with the receptive fields derived from
reverse correlation on a white noise stimulus. Using two conductance-based
model neurons that display distinct gain modulation properties through a simple
change in parameters, we show that coding properties of both these models
quantitatively satisfy the predicted relationships. Our results describe how
both variance-dependent gain modulation and adaptive neural computation result
from intrinsic nonlinearity.Comment: 24 pages, 4 figures, 1 supporting informatio
- …