1,531 research outputs found

    Electronic contribution to the oscillations of a gravitational antenna

    Full text link
    We carefully analyse the contribution to the oscillations of a metallic gravitational antenna due to the interaction between the electrons of the bar and the incoming gravitational wave. To this end, we first derive the total microscopic Hamiltonian of the wave-antenna system and then compute the contribution to the attenuation factor due to the electron-graviton interaction. As compared to the ordinary damping factor, which is due to the electron viscosity, this term turns out to be totally negligible. This result confirms that the only relevant mechanism for the interaction of a gravitational wave with a metallic antenna is its direct coupling with the bar normal modes.Comment: 25 pages, no figure

    AFES Variety Trial 2009-01

    Get PDF

    AFES Variety Trial 2010-02

    Get PDF

    AFES Variety Trial 2011-01

    Get PDF

    AFES Variety Trial 2008-01

    Get PDF

    AFES Variety Trial 2010-01

    Get PDF

    Elephant Movements and Human-Elephant Conflict in a Transfrontier Conservation Area

    Get PDF
    In this thesis I explore how elephant movements are impacted by human activity within the context of the proposed Kavango-Zambezi Transfrontier Conservation Area (KAZA TFCA) in southern Africa. Being a wide-ranging species, the movements of elephants could be an excellent indicator as to the success of TFCAs in supporting species persistence in an anthropogenic matrix. Understanding which areas beyond protected area boundaries are of heightened conservation importance can provide managers and governments with insights for the management of the elephant population of KAZA TFCA, and assist managers and governments in prioritising conservation efforts

    Magnetism of small V clusters embedded in a Cu fcc matrix: an ab initio study

    Full text link
    We present extensive first principles density functional theory (DFT) calculations dedicated to analyze the magnetic and electronic properties of small Vn_{n} clusters (n=1,2,3,4,5,6) embedded in a Cu fcc matrix. We consider different cluster structures such as: i) a single V impurity, ii) several V2_{2} dimers having different interatomic distance and varying local atomic environment, iii) V3_{3} and iv) V4_{4} clusters for which we assume compact as well as 2- and 1-dimensional atomic configurations and finally, in the case of the v) V5_{5} and vi) V6_{6} structures we consider a square pyramid and a square bipyramid together with linear arrays, respectively. In all cases, the V atoms are embedded as substitutional impurities in the Cu network. In general, and as in the free standing case, we have found that the V clusters tend to form compact atomic arrays within the cooper matrix. Our calculated non spin-polarized density of states at the V sites shows a complex peaked structure around the Fermi level that strongly changes as a function of both the interatomic distance and local atomic environment, a result that anticipates a non trivial magnetic behavior. In fact, our DFT calculations reveal, in each one of our clusters systems, the existence of different magnetic solutions (ferromagnetic, ferrimagnetic, and antiferromagnetic) with very small energy differences among them, a result that could lead to the existence of complex finite-temperature magnetic properties. Finally, we compare our results with recent experimental measurements.Comment: 7 pages and 4 figure

    Current-induced highly dissipative domains in high Tc thin films

    Full text link
    We have investigated the resistive response of high Tc thin films submitted to a high density of current. For this purpose, current pulses were applied into bridges made of Nd(1.15)Ba(1.85)Cu3O7 and Bi2Sr2CaCu2O8. By recording the time dependent voltage, we observe that at a certain critical current j*, a highly dissipative domain develops somewhere along the bridge. The successive formation of these domains produces stepped I-V characteristics. We present evidences that these domains are not regions with a temperature above Tc, as for hot spots. In fact this phenomenon appears to be analog to the nucleation of phase-slip centers observed in conventional superconductors near Tc, but here in contrast they appear in a wide temperature range. Under some conditions, these domains will propagate and destroy the superconductivity within the whole sample. We have measured the temperature dependence of j* and found a similar behavior in the two investigated compounds. This temperature dependence is just the one expected for the depairing current, but the amplitude is about 100 times smaller.Comment: 9 pages, 9 figures, Revtex, to appear in Phys. Rev.
    • …
    corecore