553 research outputs found

    Disease threats to farmed green-lipped mussels Perna canaliculus in New Zealand: Review of challenges in risk assessment and pathway analysis

    Get PDF
    The endemic green-lipped mussel (GLM) Perna canaliculus is a key cultural and economic species for New Zealand. Unlike other cultured shellfish species, GLMs have experienced relatively few disease issues. The apparent absence of diseases in both wild and farmed GLM populations does not preclude risks from environmental changes or from the introduction of overseas mussel pathogens and parasites. Potential for disease exchange between the GLM and other mytilid species present in New Zealand has yet to be elucidated. After reviewing and discussing relevant scientific literature, we present an initial assessment of GLM vulnerability to disease threats and the potential risk pathways for mussel pathogens and parasites into New Zealand and highlight a number of challenges. These include knowledge gaps relevant to GLM susceptibility to exotic pathogens and parasites, risk pathways into New Zealand and biosecurity risk associated with domestic pathways. Considerations and findings could potentially apply to other farmed aquatic species with limited distribution range and/or low disease exposure

    First direct measurements of hydraulic jumps in an active submarine density current

    Get PDF
    For almost half a century, it has been suspected that hydraulic jumps, which consist of a sudden decrease in downstream velocity and increase in flow thickness, are an important feature of submarine density currents such as turbidity currents and debris flows. Hydraulic jumps are implicated in major seafloor processes, including changes from channel erosion to fan deposition, flow transformations from debris flow to turbidity current, and large-scale seafloor scouring. We provide the first direct evidence of hydraulic jumps in a submarine density current and show that the observed hydraulic jumps are in phase with seafloor scours. Our measurements reveal strong vertical velocities across the jumps and smaller than predicted decreases in downstream velocity. Thus, we demonstrate that hydraulic jumps need not cause instantaneous and catastrophic deposition from the flow as previously suspected. Furthermore, our unique data set highlights problems in using depth-averaged velocities to calculate densimetric Froude numbers for gravity currents

    Cosmological Evolution of Brane World Moduli

    Get PDF
    We study cosmological consequences of non-constant brane world moduli in five dimensional brane world models with bulk scalars and two boundary branes. We focus on the case where the brane tension is an exponential function of the bulk scalar field, Ubexp(αϕ)U_b \propto \exp{(\alpha \phi)}. In the limit α0\alpha \to 0, the model reduces to the two-brane model of Randall-Sundrum, whereas larger values of α\alpha allow for a less warped bulk geometry. Using the moduli space approximation, we derive the four-dimensional low-energy effective action from a supergravity-inspired five-dimensional theory. For arbitrary values of α\alpha, the resulting theory has the form of a bi-scalar-tensor theory. We show that, in order to be consistent with local gravitational observations, α\alpha has to be small (less than 10210^{-2}) and the separation of the branes must be large. We study the cosmological evolution of the interbrane distance and the bulk scalar field for different matter contents on each branes. Our findings indicate that attractor solutions exist which drive the moduli fields towards values consistent with observations. The efficiency of the attractor mechanism crucially depends on the matter content on each branes. In the five-dimensional description, the attractors correspond to the motion of the negative tension brane towards a bulk singularity, which signals the eventual breakdown of the four-dimensional description and the necessity of a better understanding of the bulk singularity.Comment: 18 pages, 10 figures, typos and factor of 2 corrected, version to appear in Physical Review

    The floor in the interplanetary magnetic field: Estimation on the basis of relative duration of ICME observations in solar wind during 1976-2000

    Full text link
    To measure the floor in interplanetary magnetic field and estimate the time- invariant open magnetic flux of Sun, it is necessary to know a part of magnetic field of Sun carried away by CMEs. In contrast with previous papers, we did not use global solar parameters: we identified different large-scale types of solar wind for 1976-2000 interval, obtained a fraction of interplanetary CMEs (ICMEs) and calculated magnitude of interplanetary magnetic field B averaged over 2 Carrington rotations. The floor of magnetic field is estimated as B value at solar cycle minimum when the ICMEs were not observed and it was calculated to be 4,65 \pm 6,0 nT. Obtained value is in a good agreement with previous results.Comment: 10 pages, 2 figures, submitted in GR

    Observable Effects of Scalar Fields and Varying Constants

    Get PDF
    We show by using the method of matched asymptotic expansions that a sufficient condition can be derived which determines when a local experiment will detect the cosmological variation of a scalar field which is driving the spacetime variation of a supposed constant of Nature. We extend our earlier analyses of this problem by including the possibility that the local region is undergoing collapse inside a virialised structure, like a galaxy or galaxy cluster. We show by direct calculation that the sufficient condition is met to high precision in our own local region and we can therefore legitimately use local observations to place constraints upon the variation of "constants" of Nature on cosmological scales.Comment: Invited Festscrift Articl

    Search for varying constants of nature from astronomical observation of molecules

    Full text link
    The status of searches for possible variation in the constants of nature from astronomical observation of molecules is reviewed, focusing on the dimensionless constant representing the proton-electron mass ratio μ=mp/me\mu=m_p/m_e. The optical detection of H2_2 and CO molecules with large ground-based telescopes (as the ESO-VLT and the Keck telescopes), as well as the detection of H2_2 with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope is discussed in the context of varying constants, and in connection to different theoretical scenarios. Radio astronomy provides an alternative search strategy bearing the advantage that molecules as NH3_3 (ammonia) and CH3_3OH (methanol) can be used, which are much more sensitive to a varying μ\mu than diatomic molecules. Current constraints are Δμ/μ<5×106|\Delta\mu/\mu| < 5 \times 10^{-6} for redshift z=2.04.2z=2.0-4.2, corresponding to look-back times of 10-12.5 Gyrs, and Δμ/μ<1.5×107|\Delta\mu/\mu| < 1.5 \times 10^{-7} for z=0.88z=0.88, corresponding to half the age of the Universe (both at 3σ\sigma statistical significance). Existing bottlenecks and prospects for future improvement with novel instrumentation are discussed.Comment: Contribution to Workshop "High Performance Clocks in Space" at the International Space Science Institute, Bern 201

    Using the past to constrain the future: how the palaeorecord can improve estimates of global warming

    Full text link
    Climate sensitivity is defined as the change in global mean equilibrium temperature after a doubling of atmospheric CO2 concentration and provides a simple measure of global warming. An early estimate of climate sensitivity, 1.5-4.5{\deg}C, has changed little subsequently, including the latest assessment by the Intergovernmental Panel on Climate Change. The persistence of such large uncertainties in this simple measure casts doubt on our understanding of the mechanisms of climate change and our ability to predict the response of the climate system to future perturbations. This has motivated continued attempts to constrain the range with climate data, alone or in conjunction with models. The majority of studies use data from the instrumental period (post-1850) but recent work has made use of information about the large climate changes experienced in the geological past. In this review, we first outline approaches that estimate climate sensitivity using instrumental climate observations and then summarise attempts to use the record of climate change on geological timescales. We examine the limitations of these studies and suggest ways in which the power of the palaeoclimate record could be better used to reduce uncertainties in our predictions of climate sensitivity.Comment: The final, definitive version of this paper has been published in Progress in Physical Geography, 31(5), 2007 by SAGE Publications Ltd, All rights reserved. \c{opyright} 2007 Edwards, Crucifix and Harriso

    Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha

    Full text link
    We study the change of the effective fine structure constant in the cosmological models of a scalar field with a non-vanishing coupling to the electromagnetic field. Combining cosmological data and terrestrial observations we place empirical constraints on the size of the possible coupling and explore a large class of models that exhibit tracking behavior. The change of the fine structure constant implied by the quasar absorption spectra together with the requirement of tracking behavior impose a lower bound of the size of this coupling. Furthermore, the transition to the quintessence regime implies a narrow window for this coupling around 10510^{-5} in units of the inverse Planck mass. We also propose a non-minimal coupling between electromagnetism and quintessence which has the effect of leading only to changes of alpha determined from atomic physics phenomena, but leaving no observable consequences through nuclear physics effects. In doing so we are able to reconcile the claimed cosmological evidence for a changing fine structure constant with the tight constraints emerging from the Oklo natural nuclear reactor.Comment: 13 pages, 10 figures, RevTex, new references adde

    Models of dynamical supersymmetry breaking and quintessence

    Get PDF
    We study several models of relevance for the dynamical breaking of supersymmetry which could provide a scalar component with equation of state p=wρp=w\rho, 1<w<0-1<w<0. Such models would provide a natural explanation for recent data on the cosmological parameters.Comment: 4 pages, Late

    Star Models with Dark Energy

    Full text link
    We have constructed star models consisting of four parts: (i) a homogeneous inner core with anisotropic pressure (ii) an infinitesimal thin shell separating the core and the envelope; (iii) an envelope of inhomogeneous density and isotropic pressure; (iv) an infinitesimal thin shell matching the envelope boundary and the exterior Schwarzschild spacetime. We have analyzed all the energy conditions for the core, envelope and the two thin shells. We have found that, in order to have static solutions, at least one of the regions must be constituted by dark energy. The results show that there is no physical reason to have a superior limit for the mass of these objects but for the ratio of mass and radius.Comment: 20 pages, 1 figure, references and some comments added, typos corrected, in press GR
    corecore