17 research outputs found
Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult
The endoneurial microenvironment, delimited by the endothelium of endoneurial vessels and a multi-layered ensheathing perineurium, is a specialized milieu intérieur within which axons, associated Schwann cells and other resident cells of peripheral nerves function. The endothelium and perineurium restricts as well as regulates exchange of material between the endoneurial microenvironment and the surrounding extracellular space and thus is more appropriately described as a blood–nerve interface (BNI) rather than a blood–nerve barrier (BNB). Input to and output from the endoneurial microenvironment occurs via blood–nerve exchange and convective endoneurial fluid flow driven by a proximo-distal hydrostatic pressure gradient. The independent regulation of the endothelial and perineurial components of the BNI during development, aging and in response to trauma is consistent with homeostatic regulation of the endoneurial microenvironment. Pathophysiological alterations of the endoneurium in experimental allergic neuritis (EAN), and diabetic and lead neuropathy are considered to be perturbations of endoneurial homeostasis. The interactions of Schwann cells, axons, macrophages, and mast cells via cell–cell and cell–matrix signaling regulate the permeability of this interface. A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase our understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders
Investigating mechanical behaviour at a core-sheath interface in peripheral nerves
As peripheral nerves bend and stretch, internal elements need to move in relation to each other. However, the way in which intraneural components interact is poorly understood. Previous work identified a distinct core and sheath in the rat sciatic nerve and provides a useful model with which to investigate this interaction. Here we have focused on identifying the mechanical and anatomical characteristics of the interface between core and sheath. Nerve samples, 15 and 20 mm long, of rat sciatic nerves were harvested and placed in a purpose-built jig, and a tensile testing machine was used to pull core from sheath. Mechanical tests of specimens in which core had been previously pulled from sheath by 25% of its initial length achieved a mean pull-out force approximately six times smaller than that achieved using intact controls. These results are consistent with the proposal that core-sheath interactions involve physical connections rather than a viscous fluid interface. Anatomical features of this interface were characterised using transmission electron microscopy. It appeared that sheath was derived from epineurium and most of the perineurium, whilst core consisted of endoneurium and a small proportion of the perineurium: the plane of cleavage appeared to involve the innermost perineurial cell layer