30 research outputs found

    Self-trapped exciton state in Si nanocrystals revealed by induced absorption

    Full text link
    We report results of time-resolved induced absorption (IA) spectroscopy on Si nanocrystals (Si NCs) embedded in a SiO 2 matrix. In line with theoretical modeling, the IA amplitude decreases with probing photon energy, however only until a certain threshold value. For larger photon energies, an increase of IA is observed. This unexpected behavior is interpreted in terms of the self-trapped exciton state whose formation in Si NCs was put forward some time ago based on theoretical considerations. Here, we present a direct experimental confirmation of this supposition. © 2012 American Physical Society

    Carrier dynamics in Si nanocrystals in an SiO<inf>2</inf> matrix investigated by transient light absorption

    Get PDF
    We report on investigations of optical carrier generation in silicon nanocrystals embedded in an SiO2 matrix. Carrier relaxation and recombination processes are monitored by means of time-resolved induced absorption, using a conventional femtosecond pump-probe setup for samples containing different average sizes of nanocrystals (dNC = 2.5-5.5 nm). The electron-hole pairs generated by the pump pulse are probed by a second pulse over a broad spectral range (Eprobe = 0.95-1.35 or 1.6-3.25 eV), by which information on excited states is obtained. Under the same excitation conditions, we observe that the induced absorption intensity in the near-infrared range is a factor of ∼10 higher than in the visible range. To account for these observations, we model the spectral dependence of the induced absorption signal using an empirical sp3d5s* tight-binding technique, by which the spectrum can be well reproduced up to a certain threshold. For probe photon energies above this threshold (dependent on nanocrystal size), the induced absorption signal is found to feature a long-standing component, whereas the induced absorption signal for probe photon energies below this value vanishes within 0.5 ns. We explain this by self-trapping of excitons on surface-related states. © 2013 American Physical Society

    Silicon photonics:moving into the red

    Get PDF

    Moving into the red

    No full text

    Step-like enhancement of luminescence quantum yield of silicon nanocrystals

    Full text link
    Carrier multiplication by generation of two or more electron-hole pairs following the absorption of a single photon may lead to improved photovoltaic efficiencies1 and has been observed in nanocrystals made from a variety of semiconductors, including silicon. However, with few exceptions 2, these reports have been based on indirect ultrafast techniques3-6. Here, we present evidence of carrier multiplication in closely spaced silicon nanocrystals contained in a silicon dioxide matrix by measuring enhanced photoluminescence quantum yield. As the photon energy increases, the quantum yield is expected to remain constant, or to decrease as a result of new trapping and recombination channels being activated. Instead, we observe a step-like increase in quantum yield for larger photon energies that is characteristic of carrier multiplication7. Modelling suggests that carrier multiplication is occurring with high efficiency and close to the energy conservation limit. © 2011 Macmillan Publishers Limited. All rights reserved
    corecore