10 research outputs found

    Autoimmune thyroiditis in antinuclear antibody positive children without rheumatologic disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children are commonly referred to a pediatric rheumatology center for the laboratory finding of an Anti-nuclear antibody (ANA) of undetermined significance. Previous studies regarding adult rheumatology patients have supported an association between ANA and anti-thyroid antibodies, with the prevalence of thyroid antibodies being significantly higher in patients referred to a rheumatology center for an ANA without evidence of connective tissue disease compared to the general population. The purpose of the present study was to determine the frequency of thyroid antibodies in children referred to a pediatric rheumatology center for a positive ANA without evidence of a connective tissue disease.</p> <p>Methods</p> <p>A retrospective chart review was performed on children who were referred to our pediatric rheumatology center between August 2003 and March 2007 for positive ANA with concurrent thyroid antibody and thyroid function tests performed who did not fulfill criteria for a specific connective tissue disease. Laboratory and clinical features were recorded and analyzed. Mean and standard deviation were used to describe continuous data. Chi-square or Fisher's exact tests were used to compare proportions between variables.</p> <p>Results</p> <p>One-hundred and four ANA-positive patients with concurrent thyroid studies were evaluated (88% female, 93% Caucasian, mean age 11.9 ± 4.0 years). Half of patients had an ANA titer ≥ 1:320. The ANA pattern was speckled in 60% of the patients. Thyroid antibodies were detected in 30% of the patients. Anti-Thyroglobulin (ATG) was detected in 29% and Anti-thyroid peroxidase (ATPO) in 21% of the patients; of these children, 14% had hypothyroidism. ANA pattern and titer were not associated with anti-thyroid antibody positivity.</p> <p>Conclusion</p> <p>Thyroid antibodies associated with chronic lymphocytic thyroiditis, ATG and ATPO, were detected significantly higher in ANA-positive children without a rheumatologic condition (30%) as compared to the general pediatric population (1.3 - 3.4%). ANA titer and pattern did not help predict the presence or absence of thyroid antibodies. Given the high frequency of thyroid antibodies and increased risk of developing hypothyroidism over time, routine evaluation of ATG and ATPO with thyroid function tests in ANA-positive children is recommended.</p

    The Pleura and Its Pathology

    No full text

    Cellular and molecular perspectives in rheumatoid arthritis

    No full text

    Sex Cord-Stromal, Steroid Cell, and Other Ovarian Tumors with Endocrine, Paraendocrine, and Paraneoplastic Manifestations

    No full text

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore