620 research outputs found

    Metabolomic Analysis of Campylobacter jejuni by Direct-Injection Electrospray Ionization Mass Spectrometry

    Get PDF
    Direct-injection mass spectrometry (DIMS) is a means of rapidly obtaining metabolomic phenotype data in both prokaryotes and eukaryotes. Given our generally poor understanding of Campylobacter metabolism, the high-throughput and relatively simple sample preparation of DIMS has made this an attractive technique for metabolism-related studies and hypothesis generation, especially when attempting to analyze metabolic mutants with no clear phenotype. Here we describe a metabolomic fingerprinting approach with sampling and extraction methodologies optimized for direct-injection electrospray ionization mass spectrometry (ESI-MS), which we have used as a means of comparing wild-type and isogenic mutant strains of C. jejuni with various metabolic blocks

    Metabolomic Analysis of Campylobacter jejuni by Direct-Injection Electrospray Ionization Mass Spectrometry

    Get PDF
    Direct-injection mass spectrometry (DIMS) is a means of rapidly obtaining metabolomic phenotype data in both prokaryotes and eukaryotes. Given our generally poor understanding of Campylobacter metabolism, the high-throughput and relatively simple sample preparation of DIMS has made this an attractive technique for metabolism-related studies and hypothesis generation, especially when attempting to analyze metabolic mutants with no clear phenotype. Here we describe a metabolomic fingerprinting approach with sampling and extraction methodologies optimized for direct-injection electrospray ionization mass spectrometry (ESI-MS), which we have used as a means of comparing wild-type and isogenic mutant strains of C. jejuni with various metabolic blocks

    Capture the fracture: a best practice framework and global campaign to break the fragility fracture cycle

    Get PDF
    Summary The International Osteoporosis Foundation (IOF) Capture the Fracture Campaign aims to support implementation of Fracture Liaison Services (FLS) throughout the world. Introduction FLS have been shown to close the ubiquitous secondary fracture prevention care gap, ensuring that fragility fracture sufferers receive appropriate assessment and intervention to reduce future fracture risk. Methods Capture the Fracture has developed internationally endorsed standards for best practice, will facilitate change at the national level to drive adoption of FLS and increase awareness of the challenges and opportunities presented by secondary fracture prevention to key stakeholders. The Best Practice Framework (BPF) sets an international benchmark for FLS, which defines essential and aspirational elements of service delivery. Results The BPF has been reviewed by leading experts from many countries and subject to beta-testing to ensure that it is internationally relevant and fit-for-purpose. The BPF will also serve as a measurement tool for IOF to award β€˜Capture the Fracture Best Practice Recognition’ to celebrate successful FLS worldwide and drive service development in areas of unmet need. The Capture the Fracture website will provide a suite of resources related to FLS and secondary fracture prevention, which will be updated as new materials become available. A mentoring programme will enable those in the early stages of development of FLS to learn from colleagues elsewhere that have achieved Best Practice Recognition. A grant programme is in development to aid clinical systems which require financial assistance to establish FLS in their localities. Conclusion Nearly half a billion people will reach retirement age during the next 20Β years. IOF has developed Capture the Fracture because this is the single most important thing that can be done to directly improve patient care, of both women and men, and reduce the spiralling fracture-related care costs worldwide.</p

    The importance of plasma apolipoprotein E concentration in addition to its common polymorphism on inter-individual variation in lipid levels: results from Apo Europe

    Get PDF
    The ApoEurope group, collaborating centres, and their associated investigators: Portugal: Unidade de QuΓ­mica ClΓ­nica, Instituto Nacional de SaΓΊde, Lisboa: Maria do Carmo Martins, Maria Odete Rodrigues, Maria Isabel Albergaria, Maria Liseta AlpendreInterindividual variation in the concentration of plasma lipids which are associated with coronary artery disease (CAD) risk is determined by a combination of genetic and environmental factors. This study investigates the effects of apoE genotype and plasma concentration on cholesterol and triglycerides (TG) levels in subjects from five countries: Finland, France, Northern Ireland, Portugal, and Spain. Age and sex significantly influenced serum cholesterol, TG and apoE concentrations. The age effect differs in males and females. The allele frequencies of the apoE gene, one of the most widely studied CAD susceptibility genes, were determined: the epsilon2 allele frequency and the apoE concentration showed a north-south increasing gradient while the epsilon4 allele frequency showed the reverse. ApoE plays an important role in lipid metabolism. Total cholesterol and TG concentrations were significantly dependent on apoE genotype in both sexes. These differences in lipids between genotypes were more pronounced when plasma apoE concentrations were taken into account

    Coincident Activity of Converging Pathways Enables Simultaneous Long-Term Potentiation and Long-Term Depression in Hippocampal CA1 Network In Vivo

    Get PDF
    Memory is believed to depend on activity-dependent changes in the strength of synapses, e.g. long-term potentiation (LTP) and long-term depression (LTD), which can be determined by the sequence of coincident pre- and postsynaptic activity, respectively. It remains unclear, however, whether and how coincident activity of converging efferent pathways can enable LTP and LTD in the pathways simultaneously. Here, we report that, in pentobarbital-anesthetized rats, stimulation (600 pulses, 5 Hz) to Schaffer preceding to commissural pathway within a 40-ms timing window induced similar magnitudes of LTP in both pathways onto synapses of CA1 neurons, with varied LTP magnitudes after reversal of the stimulation sequence. In contrast, in urethane-anesthetized or freely-moving rats, the stimulation to Schaffer preceding to commissural pathway induced Schaffer LTP and commissural LTD simultaneously within a 40-ms timing window, without affecting synaptic efficacy in the reversed stimulation sequence. Coincident activity of Schaffer pathways confirmed the above findings under pentobarbital and urethane anesthesia. Thus, coincident activity of converging afferent pathways tends to switch the pathways to be LTP only or LTP/LTD depending on the activity states of the hippocampus. This network rule strengthens the view that activity-dependent synaptic plasticity may well contribute to memory process of the hippocampal network with flexibility or stability from one state to another

    Revealing the nature of morphological changes in carbon nanotube-polymer saturable absorber under high-power laser irradiation

    Get PDF
    Composites of single-walled carbon nanotubes (SWNTs) and water-soluble polymers (WSP) are the focus of significant worldwide research due to a number of applications in biotechnology and photonics, particularly for ultrashort pulse generation. Despite the unique possibility of constructing non-linear optical SWNT-WSP composites with controlled optical properties, their thermal degradation threshold and limit of operational power remain unexplored. In this study, we discover the nature of the SWNT-polyvinyl alcohol (PVA) film thermal degradation and evaluate the modification of the composite properties under continuous high-power ultrashort pulse laser operation. Using high-precision optical microscopy and micro-Raman spectroscopy, we have examined SWNT-PVA films before and after continuous laser radiation exposure (up to 40 hours) with a maximum optical fluence of 2.3 mJΒ·cmβˆ’2. We demonstrate that high-intensity laser radiation results in measurable changes in the composition and morphology of the SWNT-PVA film due to efficient heat transfer from SWNTs to the polymer matrix. The saturable absorber modification does not affect the laser operational performance. We anticipate our work to be a starting point for more sophisticated research aimed at the enhancement of SWNT-PVA films fabrication for their operation as reliable saturable absorbers in high-power ultrafast lasers

    Inhibition of FOXO3 Tumor Suppressor Function by Ξ²TrCP1 through Ubiquitin-Mediated Degradation in a Tumor Mouse Model

    Get PDF
    The ubiquitin-proteasome system is the primary proteolysis machine for controlling protein stability of the majority of regulatory proteins including those that are critical for cancer development. The forkhead box transcription factor FOXO3 plays a key role in regulating tumor suppression; however, the control of FOXO3 protein stability remains to be established. It is crucial to elucidate the molecular mechanisms underlying the ubiquitin-mediated degradation of FOXO3 tumor suppressor.Here we show that betaTrCP1 oncogenic ubiquitin E3-ligase interacts with FOXO3 and induces its ubiquitin-dependent degradation in an IkappaB kinase-beta phosphorylation dependent manner. Silencing betaTrCP1 augments FOXO3 protein level, resulting in promoting cellular apoptosis in cancer cells. In animal models, increasing FOXO3 protein level by silencing betaTrCP1 suppresses tumorigenesis, whereas decreasing FOXO3 by over-expressing betaTrCP1 promotes tumorigenesis and tumor growth in vivo.This is a unique demonstration that the betaTrCP1-mediated FOXO3 degradation plays a crucial role in tumorigenesis. These findings significantly contribute to understanding of the control of FOXO3 stability in cancer cells and may provide opportunities for developing innovative anticancer therapeutic modalities

    Hydrothermal Synthesis, Microstructure and Photoluminescence of Eu3+-Doped Mixed Rare Earth Nano-Orthophosphates

    Get PDF
    Eu3+-doped mixed rare earth orthophosphates (rare earth = La, Y, Gd) have been prepared by hydrothermal technology, whose crystal phase and microstructure both vary with the molar ratio of the mixed rare earth ions. For LaxY1–xPO4: Eu3+, the ion radius distinction between the La3+ and Y3+ is so large that only La0.9Y0.1PO4: Eu3+ shows the pure monoclinic phase. For LaxGd1–xPO4: Eu3+ system, with the increase in the La content, the crystal phase structure of the product changes from the hexagonal phase to the monoclinic phase and the microstructure of them changes from the nanorods to nanowires. Similarly, YxGd1–xPO4: Eu3+, Y0.1Gd0.9PO4: Eu3+ and Y0.5Gd0.5PO4: Eu3+ samples present the pure hexagonal phase and nanorods microstructure, while Y0.9Gd0.1PO4: Eu3+ exhibits the tetragonal phase and nanocubic micromorphology. The photoluminescence behaviors of Eu3+ in these hosts are strongly related to the nature of the host (composition, crystal phase and microstructure)

    Downgrading MELD Improves the Outcomes after Liver Transplantation in Patients with Acute-on-Chronic Hepatitis B Liver Failure

    Get PDF
    Background: High score of model for end-stage liver diseases (MELD) before liver transplantation (LT) indicates poor prognosis. Artificial liver support system (ALSS) has been proved to effectively improve liver and kidney functions, and thus reduce the MELD score. We aim to evaluate whether downgrading MELD score could improve patient survival after LT. Methodology/Principal Findings: One hundred and twenty-six LT candidates with acute-on-chronic hepatitis B liver failure and MELD score 30wereincludedinthisprospectivestudy.Ofthe126patients,42receivedemergencyLTwithin72h(ELTgroup)andtheother84weregivenALSSassalvagetreatment.Ofthe84patients,33werefoundtohavereducedMELDscore(,30)onthedayofLT(DGMgroup),51underwentLTwithpersistenthighMELDscore(Nβˆ’DGMgroup).Themedianwaitingtimeforadonorwas10forDGMgroupand9.5daysforNβˆ’DGMgroup.InNβˆ’DGMgroupthereisasignificantlyhigheroverallmortality(43.130 were included in this prospective study. Of the 126 patients, 42 received emergency LT within 72 h (ELT group) and the other 84 were given ALSS as salvage treatment. Of the 84 patients, 33 were found to have reduced MELD score (,30) on the day of LT (DGM group), 51 underwent LT with persistent high MELD score (N-DGM group). The median waiting time for a donor was 10 for DGM group and 9.5 days for N-DGM group. In N-DGM group there is a significantly higher overall mortality (43.1%) than that in ELT group (16.7%) and DGM group (15.2%). N-DGM (vs. ECT and DGM) was the only independent risk factor of overall mortality (P = 0.003). Age.40 years and the interval from last ALSS to LT.48 h were independent negative influence factors of downgrading MELD. Conclusions/Significance: Downgrading MELD for liver transplant candidates with MELD score 30 was effective i

    Heterozygous Yeast Deletion Collection Screens Reveal Essential Targets of Hsp90

    Get PDF
    Hsp90 is an essential eukaryotic chaperone with a role in folding specific β€œclient” proteins such as kinases and hormone receptors. Previously performed homozygous diploid yeast deletion collection screens uncovered broad requirements for Hsp90 in cellular transport and cell cycle progression. These screens also revealed that the requisite cellular functions of Hsp90 change with growth temperature. We present here for the first time the results of heterozygous deletion collection screens conducted at the hypothermic stress temperature of 15Β°C. Extensive bioinformatic analyses were performed on the resulting data in combination with data from homozygous and heterozygous screens previously conducted at normal (30Β°C) and hyperthermic stress (37Β°C) growth temperatures. Our resulting meta-analysis uncovered extensive connections between Hsp90 and (1) general transcription, (2) ribosome biogenesis and (3) GTP binding proteins. Predictions from bioinformatic analyses were tested experimentally, supporting a role for Hsp90 in ribosome stability. Importantly, the integrated analysis of the 15Β°C heterozygous deletion pool screen with previously conducted 30Β°C and 37Β°C screens allows for essential genetic targets of Hsp90 to emerge. Altogether, these novel contributions enable a more complete picture of essential Hsp90 functions
    • …
    corecore