9 research outputs found

    Geohelminth Infections among Pregnant Women in Rural Western Kenya; a Cross-Sectional Study

    Get PDF
    In rural western Kenya, both malaria and intestinal infections with worms are common. Pregnant women are particularly vulnerable to infection with malaria, but the effect on pregnancy of intestinal infections with worms is not clear and may depend both on how heavy the worm infection is and on the type of worm. Additionally, it is not clear whether infections with worms may affect malaria infections. In this article, we begin to disentangle some of these issues. Intestinal infections with worms were diagnosed in three-quarters of 390 pregnant women in western Kenya who provided a stool sample. In these women, intestinal worm infections caused a modest decrease both in haemoglobin levels and indicators of nutritional status. Women in their second and third pregnancies who were diagnosed with one particular type of worm infection (Ascaris lumbricoides) were less likely to have malaria than other women in their second or third pregnancies who did not have this type of worm infection. Although our results suggest that it would be good advice to treat women with drugs for intestinal worm infections during their pregnancy in this area, the effect on maternal and infant health and malaria infection needs further study

    Bias and Evolution of the Mutationally Accessible Phenotypic Space in a Developmental System

    Get PDF
    Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that are most easily affected by mutation. This study provides an empirical assessment of developmental bias and the evolution of mutationally accessible phenotypes and supports the notion that such bias may influence the directions of evolutionary change

    Prevalence of Anemia in both Developing and Developed Countries around the World

    No full text
    corecore