15 research outputs found

    Co-Regulation of the DAF-16 Target Gene, cyp-35B1/dod-13, by HSF-1 in C. elegans Dauer Larvae and daf-2 Insulin Pathway Mutants

    Get PDF
    Insulin/IGF-I-like signaling (IIS) has both cell autonomous and non-autonomous functions. In some cases, targets through which IIS regulates cell-autonomous functions, such as cell growth and metabolism, have been identified. In contrast, targets for many non-autonomous IIS functions, such as C. elegans dauer morphogenesis, remain elusive. Here, we report the use of genomic and genetic approaches to identify potential non-autonomous targets of C. elegans IIS. First, we used transcriptional microarrays to identify target genes regulated non-autonomously by IIS in the intestine or in neurons. C. elegans IIS controls expression of a number of stress response genes, which were differentially regulated by tissue-restricted IIS. In particular, expression of sod-3, a MnSOD enzyme, was not regulated by tissue-restricted IIS on the microarrays, while expression of hsp-16 genes was rescued back to wildtype by tissue restricted IIS. One IIS target regulated non-autonomously by age-1 was cyp-35B1/dod-13, encoding a cytochrome P450. Genetic analysis of the cyp-35B1 promoter showed both DAF-16 and HSF-1 are direct regulators. Based on these findings, we propose that hsf-1 may participate in the pathways mediating non-autonomous activities of age-1 in C. elegans

    The Cerebral Microvasculature in Schizophrenia: A Laser Capture Microdissection Study

    Get PDF
    BACKGROUND: Previous studies of brain and peripheral tissues in schizophrenia patients have indicated impaired energy supply to the brain. A number of studies have also demonstrated dysfunction of the microvasculature in schizophrenia patients. Together these findings are consistent with a hypothesis of blood-brain barrier dysfunction in schizophrenia. In this study, we have investigated the cerebral vascular endothelium of schizophrenia patients at the level of transcriptomics. METHODOLOGY/PRINCIPAL FINDINGS: We used laser capture microdissection to isolate both microvascular endothelial cells and neurons from post mortem brain tissue from schizophrenia patients and healthy controls. RNA was isolated from these cell populations, amplified, and analysed using two independent microarray platforms, Affymetrix HG133plus2.0 GeneChips and CodeLink Whole Human Genome arrays. In the first instance, we used the dataset to compare the neuronal and endothelial data, in order to demonstrate that the predicted differences between cell types could be detected using this methodology. We then compared neuronal and endothelial data separately between schizophrenic subjects and controls. Analysis of the endothelial samples showed differences in gene expression between schizophrenics and controls which were reproducible in a second microarray platform. Functional profiling revealed that these changes were primarily found in genes relating to inflammatory processes. CONCLUSIONS/SIGNIFICANCE: This study provides preliminary evidence of molecular alterations of the cerebral microvasculature in schizophrenia patients, suggestive of a hypo-inflammatory state in this tissue type. Further investigation of the blood-brain barrier in schizophrenia is warranted

    Exploitation of the Toll-like receptor system in cancer: a doubled-edged sword?

    Get PDF
    The toll-like receptor (TLR) system constitutes a pylogenetically ancient, evolutionary conserved, archetypal pattern recognition system, which underpins pathogen recognition by and activation of the immune system. Toll-like receptor agonists have long been used as immunoadjuvants in anti cancer immunotherapy. However, TLRs are increasingly implicated in human disease pathogenesis and an expanding body of both clinical and experimental evidence suggests that the neoplastic process may subvert TLR signalling pathways to advance cancer progression. Recent discoveries in the TLR system open a multitude of potential therapeutic avenues. Extrapolation of such TLR system manipulations to a clinical oncological setting demands care to prevent potentially deleterious activation of TLR-mediated survival pathways. Thus, the TLR system is a double-edge sword, which needs to be carefully wielded in the setting of neoplastic disease
    corecore