15,597 research outputs found
Mountain trail formation and the active walker model
We extend the active walker model to address the formation of paths on
gradients, which have been observed to have a zigzag form. Our extension
includes a new rule which prohibits direct descent or ascent on steep inclines,
simulating aversion to falling. Further augmentation of the model stops walkers
from changing direction very rapidly as that would likely lead to a fall. The
extended model predicts paths with qualitatively similar forms to the observed
trails, but only if the terms suppressing sudden direction changes are
included. The need to include terms into the model that stop rapid direction
change when simulating mountain trails indicates that a similar rule should
also be included in the standard active walker model.Comment: Introduction improved. Analysis of discretization errors added.
Calculations from alternative scheme include
Secondary electron background produced by heavy nuclei in a multiwire proportional counter hodoscope
The secondary electron background produced by heavy nuclei in a multiwire proportional counter hodoscope is calculated using both a simplified and a more complete Monte Carlo model. These results are compared with experimental data from a small multiwire proportional counter hodoscope operated in a 530 MeV/nucleon accelerator beam of nitrogen nuclei. Estimates of the secondary electron background produced by heavy relativistic nuclei are presented along with the detailed results from calculations of energy deposition in the hodoscope counter cells
Non-nequilibrium model on Apollonian networks
We investigate the Majority-Vote Model with two states () and a noise
on Apollonian networks. The main result found here is the presence of the
phase transition as a function of the noise parameter . We also studies de
effect of redirecting a fraction of the links of the network. By means of
Monte Carlo simulations, we obtained the exponent ratio ,
, and for several values of rewiring probability . The
critical noise was determined and also was calculated. The
effective dimensionality of the system was observed to be independent on ,
and the value is observed for these networks. Previous
results on the Ising model in Apollonian Networks have reported no presence of
a phase transition. Therefore, the results present here demonstrate that the
Majority-Vote Model belongs to a different universality class as the
equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure
Evaluation of be-38 percent al alloy final report, 27 jun. 1964 - 28 feb. 1965
Mechanical properties, microstructural features, and general metallurgical quality of beryllium- aluminum allo
A novel dielectric tensiometer enabling precision PID-based irrigation control of polytunnel-grown strawberries in coir
The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use, by controlling irrigation in response to soil or substrate moisture changes, to meet crop water demands is a popular approach but requires substrate specific moisture sensor calibrations and knowledge of the moisture levels that result in water deficit or overwatering. The use of water tension sensors removes the need for substrate specific calibration and enables a more direct relationship with hydraulic conductivity. In this paper, we present a novel dielectric tensiometer that has been designed specifically for use in soil-free substrates such as coir, peat and Rockwool with a water tension measurement range of 0.7 kPa to 2.5 kPa. This new sensor design has also been integrated with a precision PID-based (drip) irrigation controller in a small-scale coir substrate strawberry growing trial: 32 strawberry plants in 4 coir growbags under a polytunnel. The data illustrates that excellent regulation of water tension in coir can be achieved which delivers robust and
precise irrigation control - matching water delivery to the demands of the plants. During a 30-day growing period vapour pressure deficit (VPD) and daily water use data was collected and the irrigation controller set to maintain coir water tension at the following levels: 0.90 kPa, 0.95 kPa and 1 kPa for at least 7 consecutive days at each level. For each setpoint the coir water tension was maintained by the irrigation controller to within ±0.05 kPa. Meanwhile the polytunnel VPD varied diurnally from 0 to a maximum of 5 kPa over the trial period. Furthermore, the combination of the dielectric tensiometer and the method of PID-based irrigation control resulted in a linear relationship between daily average VPD and daily water use over 10 days during the cropping period
Molecular Model of Dynamic Social Network Based on E-mail communication
In this work we consider an application of physically inspired sociodynamical model to the modelling of the evolution of email-based social network. Contrary to the standard approach of sociodynamics, which assumes expressing of system dynamics with heuristically defined simple rules, we postulate the inference of these rules from the real data and their application within a dynamic molecular model. We present how to embed the n-dimensional social space in Euclidean one. Then, inspired by the Lennard-Jones potential, we define a data-driven social potential function and apply the resultant force to a real e-mail communication network in a course of a molecular simulation, with network nodes taking on the role of interacting particles. We discuss all steps of the modelling process, from data preparation, through embedding and the molecular simulation itself, to transformation from the embedding space back to a graph structure. The conclusions, drawn from examining the resultant networks in stable, minimum-energy states, emphasize the role of the embedding process projecting the non–metric social graph into the Euclidean space, the significance of the unavoidable loss of information connected with this procedure and the resultant preservation of global rather than local properties of the initial network. We also argue applicability of our method to some classes of problems, while also signalling the areas which require further research in order to expand this applicability domain
Netons: Vibrations of Complex Networks
We consider atoms interacting each other through the topological structure of
a complex network and investigate lattice vibrations of the system, the quanta
of which we call {\em netons} for convenience. The density of neton levels,
obtained numerically, reveals that unlike a local regular lattice, the system
develops a gap of a finite width, manifesting extreme rigidity of the network
structure at low energies. Two different network models, the small-world
network and the scale-free network, are compared: The characteristic structure
of the former is described by an additional peak in the level density whereas a
power-law tail is observed in the latter, indicating excitability of netons at
arbitrarily high energies. The gap width is also found to vanish in the
small-world network when the connection range .Comment: 9 pages, 6 figures, to appear in JP
Competition in Social Networks: Emergence of a Scale-free Leadership Structure and Collective Efficiency
Using the minority game as a model for competition dynamics, we investigate
the effects of inter-agent communications on the global evolution of the
dynamics of a society characterized by competition for limited resources. The
agents communicate across a social network with small-world character that
forms the static substrate of a second network, the influence network, which is
dynamically coupled to the evolution of the game. The influence network is a
directed network, defined by the inter-agent communication links on the
substrate along which communicated information is acted upon. We show that the
influence network spontaneously develops hubs with a broad distribution of
in-degrees, defining a robust leadership structure that is scale-free.
Furthermore, in realistic parameter ranges, facilitated by information exchange
on the network, agents can generate a high degree of cooperation making the
collective almost maximally efficient.Comment: 4 pages, 2 postscript figures include
Applications of graphics to support a testbed for autonomous space vehicle operations
Researchers describe their experience using graphics tools and utilities while building an application, AUTOPS, that uses a graphical Machintosh (TM)-like interface for the input and display of data, and animation graphics to enhance the presentation of results of autonomous space vehicle operations simulations. AUTOPS is a test bed for evaluating decisions for intelligent control systems for autonomous vehicles. Decisions made by an intelligent control system, e.g., a revised mission plan, might be displayed to the user in textual format or he can witness the effects of those decisions via out of window graphics animations. Although a textual description conveys essentials, a graphics animation conveys the replanning results in a more convincing way. Similarily, iconic and menu-driven screen interfaces provide the user with more meaningful options and displays. Presented here are experiences with the SunView and TAE Plus graphics tools used for interface design, and the Johnson Space Center Interactive Graphics Laboratory animation graphics tools used for generating out out of the window graphics
Preferential Myosin Heavy Chain Isoform B Expression May Contribute to the Faster Velocity of Contraction in Veins versus Arteries
Smooth muscle myosin heavy chains occur in 2 isoforms, SMA (slow) and SMB (fast). We hypothesized that the SMB isoform is predominant in the faster-contracting rat vena cava compared to thoracic aorta. We compared the time to half maximal contraction in response to a maximal concentration of endothelin-1 (ET-1; 100 nM), potassium chloride (KCl; 100 mM) and norepinephrine (NE; 10 µM). The time to half maximal contraction was shorter in the vena cava compared to aorta (aorta: ET-1 = 235.8 ± 13.8 s, KCl = 140.0 ± 33.3 s, NE = 19.8 ± 2.7 s; vena cava: ET-1 = 121.8 ± 15.6 s, KCl = 49.5 ± 6.7 s, NE = 9.0 ± 3.3 s). Reverse-transcription polymerase chain reaction supported the greater expression of SMB in the vena cava compared to aorta. SMB was expressed to a greater extent than SMA in the vessel wall of the vena cava. Western analysis determined that expression of SMB, relative to total smooth muscle myosin heavy chains, was 12.5 ± 4.9-fold higher in the vena cava compared to aorta, while SMA was 4.9 ± 1.2-fold higher in the aorta than vena cava. Thus, the SMB isoform is the predominant form expressed in rat veins, providing one possible mechanism for the faster response of veins to vasoconstrictors
- …