31,267 research outputs found

    Mode-coupling theory and molecular dynamics simulation for heat conduction in a chain with transverse motions

    Full text link
    We study heat conduction in a one-dimensional chain of particles with longitudinal as well as transverse motions. The particles are connected by two-dimensional harmonic springs together with bending angle interactions. The problem is analyzed by mode-coupling theory and compared with molecular dynamics. We find very good, quantitative agreement for the damping of modes between a full mode-coupling theory and molecular dynamics result, and a simplified mode-coupling theory gives qualitative description of the damping. The theories predict generically that thermal conductance diverges as N^{1/3} as the size N increases for systems terminated with heat baths at the ends. The N^{2/5} dependence is also observed in molecular dynamics which we attribute to crossover effect.Comment: 17 pages, 13 figure

    Updated predictions for graviton and photon associated production at the LHC

    Full text link
    We present updated predictions on the inclusive total cross sections, including the complete next-to-leading order QCD corrections, for the graviton and photon associated production process in the large extra dimensions model at the LHC with a center-of-mass energy of 7 and 8 TeV, using the parameters according to the requirements of the ATLAS and CMS Collaborations. Moreover, we also discuss in detail the dependence on the transverse momentum cut and uncertainties due to the choices of scales and parton distribution functions.Comment: 5 pages, 3 figures, 2 tables, version published in PR

    Tuning thermal transport in nanotubes with topological defects

    Full text link
    Using the atomistic nonequilibrium Green's function, we find that thermal conductance of carbon nanotubes with presence of topological lattice imperfects is remarkably reduced, due to the strong Rayleigh scattering of high-frequency phonons. Phonon transmission across multiple defects behaves as a cascade scattering based with the random phase approximation. We elucidate that phonon scattering by structural defects is related to the spatial fluctuations of local vibrational density of states (LVDOS). An effective method of tuning thermal transport in low-dimensional systems through the modulation of LVDOS has been proposed. Our findings provide insights into experimentally controlling thermal transport in nanoscale devicesComment: 10 pages, 3 figure

    On the pinning strategy of complex networks

    Full text link
    In pinning control of complex networks, a tacit believing is that the system dynamics will be better controlled by pinning the large-degree nodes than the small-degree ones. Here, by changing the number of pinned nodes, we find that, when a significant fraction of the network nodes are pinned, pinning the small-degree nodes could generally have a higher performance than pinning the large-degree nodes. We demonstrate this interesting phenomenon on a variety of complex networks, and analyze the underlying mechanisms by the model of star networks. By changing the network properties, we also find that, comparing to densely connected homogeneous networks, the advantage of the small-degree pinning strategy is more distinct in sparsely connected heterogenous networks
    corecore