1,265 research outputs found

    Towards Faster Training of Global Covariance Pooling Networks by Iterative Matrix Square Root Normalization

    Full text link
    Global covariance pooling in convolutional neural networks has achieved impressive improvement over the classical first-order pooling. Recent works have shown matrix square root normalization plays a central role in achieving state-of-the-art performance. However, existing methods depend heavily on eigendecomposition (EIG) or singular value decomposition (SVD), suffering from inefficient training due to limited support of EIG and SVD on GPU. Towards addressing this problem, we propose an iterative matrix square root normalization method for fast end-to-end training of global covariance pooling networks. At the core of our method is a meta-layer designed with loop-embedded directed graph structure. The meta-layer consists of three consecutive nonlinear structured layers, which perform pre-normalization, coupled matrix iteration and post-compensation, respectively. Our method is much faster than EIG or SVD based ones, since it involves only matrix multiplications, suitable for parallel implementation on GPU. Moreover, the proposed network with ResNet architecture can converge in much less epochs, further accelerating network training. On large-scale ImageNet, we achieve competitive performance superior to existing counterparts. By finetuning our models pre-trained on ImageNet, we establish state-of-the-art results on three challenging fine-grained benchmarks. The source code and network models will be available at http://www.peihuali.org/iSQRT-COVComment: Accepted to CVPR 201

    Second-Harmonic Generation and Spectrum Modulation by Active Nonlinear Metamaterial

    Full text link
    The nonlinear properties of a metamaterial sample composed of double-layer metallic patterns and voltage controllable diodes are experimentally investigated. Second harmonics and spectrum modulations are clearly observed in a wide band of microwave frequencies, showing that this kind of metamaterial is not only tunable by low DC bias voltage, but also behaves strong nonlinear property under a small power incidence. These properties are difficult to be found in normal, naturally occurring materials.Comment: 14 pages, 4 figure
    • …
    corecore