11,081 research outputs found
High Speed Balancing Applied to the T700 Engine
The work performed under Contracts NAS3-23929 and NAS3-24633 is presented. MTI evaluated the feasibility of high-speed balancing for both the T700 power turbine rotor and the compressor rotor. Modifications were designed for the existing Corpus Christi Army Depot (CCAD) T53/T55 high-speed balancing system for balancing T700 power turbine rotors. Tests conducted under these contracts included a high-speed balancing evaluation for T700 power turbines in the Army/NASA drivetrain facility at MTI. The high-speed balancing tests demonstrated the reduction of vibration amplitudes at operating speed for both low-speed balanced and non-low-speed balanced T700 power turbines. In addition, vibration data from acceptance tests of T53, T55, and T700 engines were analyzed and a vibration diagnostic procedure developed
Experiences with the use of axisymmetric elements in cosmic NASTRAN for static analysis
Discussed here are some recent finite element modeling experiences using the axisymmetric elements CONEAX, TRAPAX, and TRIAAX, from the COSMIC NASTRAN element library. These experiences were gained in the practical application of these elements to the static analysis of helicopter rotor force measuring systems for two design projects for the NASA Ames Research Center. These design projects were the Rotor Test Apparatus and the Large Rotor Test Apparatus, which are dedicated to basic helicopter research. Here, a genetic axisymmetric model is generated for illustrative purposes. Modeling considerations are discussed, and the advantages and disadvantages of using axisymmetric elements are presented. Asymmetric mechanical and thermal loads are applied to the structure, and single and multi-point constraints are addressed. An example that couples the axisymmetric model to a non-axisymmtric model is demonstrated, complete with DMAP alters. Recommendations for improving the elements and making them easier to use are offered
Using visualization for visualization : an ecological interface design approach to inputting data
Visualization is experiencing growing use by a diverse community, with continuing improvements in the availability and usability of systems. In spite of these developments the problem of how first to get the data in has received scant attention: the established approach of pre-defined readers and programming aids has changed little in the last two decades. This paper proposes a novel way of inputting data for scientific visualization that employs rapid interaction and visual feedback in order to understand how the data is stored. The approach draws on ideas from the discipline of ecological interface design to extract and control important parameters describing the data, at the same time harnessing our innate human ability to recognize patterns. Crucially, the emphasis is on file format discovery rather than file format description, so the method can therefore still work when nothing is known initially of how the file was originally written, as is often the case with legacy binary data. © 2013 Elsevier Ltd
PCA of PCA: Principal Component Analysis of Partial Covering Absorption in NGC 1365
We analyse 400 ks of XMM-Newton data on the active galactic nucleus NGC 1365
using principal component analysis (PCA) to identify model independent spectral
components. We find two significant components and demonstrate that they are
qualitatively different from those found in MCG?6-30-15 using the same method.
As the variability in NGC 1365 is known to be due to changes in the parameters
of a partial covering neutral absorber, this shows that the same mechanism
cannot be the driver of variability in MCG-6-30-15. By examining intervals
where the spectrum shows relatively low absorption we separate the effects of
intrinsic source variability, including signatures of relativistic reflection,
from variations in the intervening absorption. We simulate the principal
components produced by different physical variations, and show that PCA
provides a clear distinction between absorption and reflection as the drivers
of variability in AGN spectra. The simulations are shown to reproduce the PCA
spectra of both NGC 1365 and MCG-6-30-15, and further demonstrate that the
dominant cause of spectral variability in these two sources requires a
qualitatively different mechanism.Comment: 8 pages, 10 figures. Accepted for publication in MNRA
The Ultra-Fast Outflow of WKK 4438: Suzaku and NuSTAR X-ray Spectral Analysis
Previous X-ray spectral analysis has revealed an increasing number of AGNs
with high accretion rates where an outflow with a mildly relativistic velocity
originates from the inner accretion disk. Here we report the detection of a new
ultra-fast outflow (UFO) with a velocity of in addition to a relativistic disk reflection
component in a poorly studied NLS1 WKK~4438, based on archival \nustar and
\suzaku observations. The spectra of both \suzaku and \nustar observations show
an Fe~\textsc{xxvi} absorption feature and the \suzaku data also show evidence
for an Ar~\textsc{xviii} with the same blueshift. A super-solar argon abundance
() and a slight iron over-abundance
() are found in our spectral
modelling. Based on Monte-Carlo simulations, the detection of the UFO is
estimated to be around at 3 significance. The fast wind most likely
arises from a radius of away from the central black hole. The disk
is accreting at a high Eddington ratio (). The
mass outflow rate of the UFO is comparable with the disk mass inflow rate
(), assuming a maximum covering factor.
The kinetic power of the wind might not be high enough to have influence in AGN
feedback () due to a relatively
small column density (~cm). However note that
both the inferred velocity and the column density could be lower limits owing
to the low viewing angle ().Comment: 7 pages, 3 figures, accepted by MNRA
A Rapidly Spinning Black Hole Powers the Einstein Cross
Observations over the past 20 years have revealed a strong relationship
between the properties of the supermassive black hole (SMBH) lying at the
center of a galaxy and the host galaxy itself. The magnitude of the spin of the
black hole will play a key role in determining the nature of this relationship.
To date, direct estimates of black hole spin have been restricted to the local
Universe. Herein, we present the results of an analysis of 0.5 Ms of
archival Chandra observations of the gravitationally lensed quasar Q 2237+305
(aka the "Einstein-cross"), lying at a redshift of z = 1.695. The boost in flux
provided by the gravitational lens allows constraints to be placed on the spin
of a black hole at such high redshift for the first time. Utilizing state of
the art relativistic disk reflection models, the black hole is found to have a
spin of at the 90% confidence level. Placing a
lower limit on the spin, we find (4). The high value of
the spin for the black hole in Q 2237+305 lends
further support to the coherent accretion scenario for black hole growth. This
is the most distant black hole for which the spin has been directly constrained
to date.Comment: 5 pages, 3 figures, 1 table, formatted using emulateapj.cls. Accepted
for publication in ApJ
Modelling the Extreme X-ray Spectrum of IRAS 13224-3809
The extreme NLS1 galaxy IRAS 13224-3809 shows significant variability,
frequency depended time lags, and strong Fe K line and Fe L features in the
long 2011 XMM-Newton observation. In this work we study the spectral properties
of IRAS 13224-3809 in detail, and carry out a series of analyses to probe the
nature of the source, focusing in particular on the spectral variability
exhibited. The RGS spectrum shows no obvious signatures of absorption by
partially ionised material (warm absorbers). We fit the 0.3-10.0 keV spectra
with a model that includes relativistic reflection from the inner accretion
disc, a standard powerlaw AGN continuum, and a low-temperature (~0.1 keV)
blackbody, which may originate in the accretion disc, either as direct or
reprocessed thermal emission. We find that the reflection model explains the
time-averaged spectrum well, and we also undertake flux-resolved and
time-resolved spectral analyses, which provide evidence of gravitational
light-bending effects. Additionally, the temperature and flux of the blackbody
component are found to follow the relation expected for simple
thermal blackbody emission from a constant emitting area, indicating a physical
origin for this component.Comment: 12 pages, 7 figures, accepted for publication in MNRA
- …