408 research outputs found
Recommended from our members
Frequency-magnitude distribution of microearthquakes beneath the 9°50′N region of the East Pacific Rise, October 2003 through April 2004
Relocated hypocentral data from a 7-month deployment (October 2003 to April 2004) of ocean bottom seismometers provide an opportunity to map microearthquake frequency-magnitude distributions (FMDs) along the 9°49–52′N region on the East Pacific Rise. These analyses, which incorporate more than 9000 earthquakes, represent the first investigation of the 3-D spatial and temporal patterns of FMDs along any mid-ocean ridge spreading center. The data are described well by a Gutenberg-Richter model, indicating a power law or fractal relationship between earthquake size and frequency. The scaling exponent, or b value, shows significant spatial variability, exceeding a value of 2.0 at the shallowest depths on axis and dropping below 1.0 away from the axial trough. This spatial pattern is consistent with an inverse relationship between b value and ambient stress conditions, with the lowest stress levels at shallow depths and relatively high stress levels (or low pore pressures) observed away from the axial zone. Intermediate b values are observed on-axis above the ridge system's melt lens; however, within this region there also exists significant spatial variability. This indicates that stress conditions and/or structural heterogeneity may vary at subkilometer scales within the hydrothermal circulation cell. Although the observational period is characterized by increasing seismicity rates, building toward an eruptive episode in January 2006, the first-order spatial pattern of b values is sustained, with no overall temporal trend. As a byproduct of this b value analysis, the detection capabilities of the array are assessed empirically
Recommended from our members
Pulse of the seafloor: Tidal triggering of microearthquakes at 9°50′N East Pacific Rise
Unequivocal evidence of tidal triggering is observed for microearthquakes (−0.4 to 2.0 M_L) recorded between October 2003 to April 2004 near 9°50′N on the East Pacific Rise (EPR). Although semidiurnal tidal stress changes are small (99.9%) nonrandom temporal distribution, with events occurring preferentially near times of peak extension. Due to the proximity of this site to an ocean tidal node, where changes in sea surface height are minimal, periodic stress changes are dominated by the solid Earth tide. In contrast, previous studies on the Juan de Fuca Ridge have shown microearthquake triggering to be a response to seafloor unloading during times of low ocean tide. The modulation of 9°50′N microearthquakes by small-amplitude periodic stresses is consistent with earthquake nucleation within a high stressing rate environment that is maintained near a critical state of failure by on-axis magmatic and hydrothermal processes
High-resolution image of Calaveras Fault seismicity
By measuring relative earthquake arrival times using waveform cross correlation and locating earthquakes using the double difference technique, we are able to reduce hypocentral errors by 1 to 2 orders of magnitude over routine locations for nearly 8000 events along a 35-km section of the Calaveras Fault. This represents ∼92% of all seismicity since 1984 and includes the rupture zone of the M 6.2 1984 Morgan Hill, California, earthquake. The relocated seismicity forms highly organized structures that were previously obscured by location errors. There are abundant repeating earthquake sequences as well as linear clusters of earthquakes. Large voids in seismicity appear with dimensions of kilometers that have been aseismic over the 30-year time interval, suggesting that these portions of the fault are either locked or creeping. The area of greatest slip in the Morgan Hill main shock coincides with the most prominent of these voids, suggesting that this part of the fault may be locked between large earthquakes. We find that the Calaveras Fault at depth is extremely thin, with an average upper bound on fault zone width of 75 m. Given the location error, however, this width is not resolvably different from zero. The relocations reveal active secondary faults, which we use to solve for the stress field in the immediate vicinity of the Calaveras Fault. We find that the maximum compressive stress is at a high angle, only 13° from the fault normal, supporting previous interpretations that this fault is weak
Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L'Aquila (central Italy) case study
We studied the anatomy of the fault system where the 2009 L'Aquila earthquake (M_W 6.1) nucleated by means of ~64 k high-precision earthquake locations spanning 1 year. Data were analyzed by combining an automatic picking procedure for P and S waves, together with cross-correlation and double-difference location methods reaching a completeness magnitude for the catalogue equal to 0.7 including 425 clusters of similar earthquakes. The fault system is composed by two major faults: the high-angle L'Aquila fault and the listric Campotosto fault, both located in the first 10 km of the upper crust. We detect an extraordinary degree of detail in the anatomy of the single fault segments resembling the degree of complexity observed by field geologists on fault outcrops. We observe multiple antithetic and synthetic fault segments tens of meters long in both the hanging wall and footwall along with bends and cross fault intersections along the main fault and fault splays. The width of the L'Aquila fault zone varies along strike from 0.3 km where the fault exhibits the simplest geometry and experienced peaks in the slip distribution, up to 1.5 km at the fault tips with an increase in the geometrical complexity. These characteristics, similar to damage zone properties of natural faults, underline the key role of aftershocks in fault growth and co-seismic rupture propagation processes. Additionally, we interpret the persistent nucleation of similar events at the seismicity cutoff depth as the presence of a rheological (i.e., creeping) discontinuity explaining how normal faults detach at depth
Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study
We studied the anatomy of the fault system where the 2009 L’Aquila earthquake
(MW 6.1) nucleated by means of ~64 k high-precision earthquake locations spanning
1 year. Data were analyzed by combining an automatic picking procedure for P and S
waves, together with cross-correlation and double-difference location methods reaching a
completeness magnitude for the catalogue equal to 0.7 including 425 clusters of similar
earthquakes. The fault system is composed by two major faults: the high-angle L’Aquila
fault and the listric Campotosto fault, both located in the first 10 km of the upper crust. We
detect an extraordinary degree of detail in the anatomy of the single fault segments
resembling the degree of complexity observed by field geologists on fault outcrops. We
observe multiple antithetic and synthetic fault segments tens of meters long in both the
hanging wall and footwall along with bends and cross fault intersections along the main
fault and fault splays. The width of the L’Aquila fault zone varies along strike from 0.3 km
where the fault exhibits the simplest geometry and experienced peaks in the slip
distribution, up to 1.5 km at the fault tips with an increase in the geometrical complexity.
These characteristics, similar to damage zone properties of natural faults, underline the key
role of aftershocks in fault growth and co-seismic rupture propagation processes.
Additionally, we interpret the persistent nucleation of similar events at the seismicity cutoff depth as the presence of a rheological (i.e., creeping) discontinuity explaining how normal faults detach at depth
Recommended from our members
Systematic along-axis tidal triggering of microearthquakes observed at 9°50′N East Pacific Rise
Hydrothermal fluid circulation at mid-ocean ridges facilitates the exchange of heat and chemicals between the oceans and the solid Earth, and supports chemosynthetic microbial and macro-faunal communities. The structure and evolution of newly formed oceanic crust plays a dominant role in controlling the character and longevity of hydrothermal systems; however, direct measurements of subsurface processes remain technologically challenging to obtain. Previous studies have shown that tidally-induced stresses within the subseafloor modulate both fluid flow and microearthquake origin times. In this study, we observe systematic along-axis variations between peak microearthquake activity and maximum predicted tidal extension beneath the hydrothermal vent site at 9°50′N East Pacific Rise. We interpret this systematic triggering to result from pore-pressure perturbations propagating laterally through the hydrothermal system. Based on our observations and a one-dimensional pore pressure perturbation model, we estimate bulk permeability at ∼10⁻¹³ to 10⁻¹² m² within layer 2B over a calculated diffusive lengthscale of 2.0 km
Team building:conceptual, methodological, and applied considerations
Team building has been identified as an important method of improving the psychological climate in which teams operate, as well as overall team functioning. Within the context of sports, team building interventions have consistently been found to result in improvements in team effectiveness. In this paper we review the extant literature on team building in sport, and address a range of conceptual, methodological, and applied considerations that have the potential to advance theory, research, and applied intervention initiatives within the field. This involves expanding the scope of team building strategies that have, to date, primarily focused on developing group cohesion.</p
Recommended from our members
Back-arc extension in the Andaman Sea: Tectonic and magmatic processes imaged by high-precision teleseismic double-difference earthquake relocation
The geometry, kinematics, and mode of back-arc extension along the Andaman Sea plate boundary are refined using a new set of significantly improved hypocenters, global centroid moment tensor (CMT) solutions, and high-resolution bathymetry. By applying cross-correlation and double-difference (DD) algorithms to regional and teleseismic waveforms and arrival times from International Seismological Centre and National Earthquake Information Center bulletins (1964–2009), we resolve the fine-scale structure and spatiotemporal behavior of active faults in the Andaman Sea. The new data reveal that back-arc extension is primarily accommodated at the Andaman Back-Arc Spreading Center (ABSC) at ~10°, which hosted three major earthquake swarms in 1984, 2006, and 2009. Short-term spreading rates estimated from extensional moment tensors account for less than 10% of the long-term 3.0–3.8 cm/yr spreading rate, indicating that spreading by intrusion and the formation of new crust make up for the difference. A spatiotemporal analysis of the swarms and Coulomb-stress modeling show that dike intrusions are the primary driver for brittle failure in the ABSC. While spreading direction is close to ridge normal, it is oblique to the adjacent transforms. The resulting component of E-W extension across the transforms is expressed by deep basins on either side of the rift and a change to extensional faulting along the West Andaman fault system after the Mw = 9.2 Sumatra-Andaman earthquake of 2004. A possible skew in slip vectors of earthquakes in the eastern part of the ABSC indicates an en-echelon arrangement of extensional structures, suggesting that the present segment geometry is not in equilibrium with current plate-motion demands, and thus the ridge experiences ongoing re-adjustment
Recommended from our members
January 2006 seafloor-spreading event at 9°50′N, East Pacific Rise: Ridge dike intrusion and transform fault interactions from regional hydroacoustic data
An array of autonomous underwater hydrophones is used to investigate regional seismicity associated with the 22 January 2006 seafloor-spreading event on the northern East Pacific Rise near 9°50′N. Significant earthquake activity was observed beginning 3 weeks prior to the eruption, where a total of 255 earthquakes were detected within the vicinity of the 9°50′N area. This was followed by a series of 252 events on 22 January and a rapid decline to background seismicity levels during the subsequent 3 days. Because of their small magnitudes, accurate locations could be derived for only 20 of these events, 18 of which occurred during a 1-h period on 22 January. These earthquakes cluster near 9°45′N and 9°55′N, at the distal ends of the young lava flows identified posteruption, where the activity displays a distinct spatial-temporal pattern, alternating from the north to the south and then back to the north. This implies either rapid bilateral propagation along the rift or the near-simultaneous injection of melt vertically from the axial magma lens. Short-duration T wave risetimes are consistent with the eruption of lavas in the vicinity of 9°50′N on 22 January 2006. Eruptions on 12 and 15–16 January also may be inferred from the risetime data; however, the locations of these smaller-magnitude events cannot be determined accurately. Roughly 15 h after the last earthquakes were located adjacent to the eruption site, a sequence of 16 earthquakes began to the north-northeast at a distance of 25–40 km from the 9°50′N site. These events are located in vicinity of the Clipperton Transform and its western inside corner, an area from which the regional hydrophone network routinely detects seismicity. Coulomb stress modeling indicates that a dike intrusion spanning the known eruptive zone to the south (9°46′–9°56′N) would act to promote normal faulting or a combination of normal faulting and transform slip within this region, with stress changes on the order of 1–10 kPa
- …