188 research outputs found

    "Then you get a teacher" - Guidelines for excellence in teaching

    Get PDF
    Background: Current literature calls for the explicit teaching to health-science educators of the skills, knowledge and dispositions that are required for successful teaching in higher education. Aims: This paper draws on evidence from an Oral Hygiene department at a South African university in order to illustrate these teaching-competency needs. Insights from the evidence are synthesised with current literature regarding best teaching practice, in support of an appropriate framework for the development of teaching competencies to health-science educators. Description: A qualitative approach, using a case study, was adopted. The cohort comprised fifteen students in the first-year Oral Hygiene cohort class and the ten educators who taught their programme. Data was collected through semistructured interviews and open-ended questionnaires. The topics that emerged from the combined analysis of the interviews and the questionnaires were organised into a grid so that common themes could be identified. Current literature regarding teaching and learning was used as a framework for interpreting the empirical evidence, from which three categories emerged. The first category included suggestions from students regarding what to do to teach better. A review of the literature indicates that these competencies can be effectively learnt from self-help guides. The second category included requests for skills development. Literature review suggests that these might effectively be learnt from single-event workshops facilitated by more able peers. Responses in the final category highlighted the need for an underpinning theory of teaching and learning, and signalled the need for a more theoretically grounded and detailed approach to teacher development. Conclusion: The framework developed from the empirical study and current literature makes it possible for individual clinical teachers, and staff developers, to construct teaching-competency development plans that are pertinent to individual teachers’ needs, relevant and practical, educationally sound, and cost-effective in terms of time and effort

    The Universal Plausibility Metric (UPM) & Principle (UPP)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mere possibility is not an adequate basis for asserting scientific plausibility. A precisely defined universal bound is needed beyond which the assertion of <it>plausibility</it>, particularly in life-origin models, can be considered operationally falsified. But can something so seemingly relative and subjective as plausibility ever be quantified? Amazingly, the answer is, "Yes." A method of objectively measuring the plausibility of any chance hypothesis (The Universal Plausibility Metric [UPM]) is presented. A numerical inequality is also provided whereby any chance hypothesis can be definitively falsified when its UPM metric of ξ is < 1 (The Universal Plausibility Principle [UPP]). Both UPM and UPP pre-exist and are independent of any experimental design and data set.</p> <p>Conclusion</p> <p>No low-probability hypothetical plausibility assertion should survive peer-review without subjection to the UPP inequality standard of formal falsification (ξ < 1).</p

    Directed Self-Assembly: Expectations and Achievements

    Get PDF
    Nanotechnology has been a revolutionary thrust in recent years of development of science and technology for its broad appeal for employing a novel idea for relevant technological applications in particular and for mass-scale production and marketing as common man commodity in general. An interesting aspect of this emergent technology is that it involves scientific research community and relevant industries alike. Top–down and bottom–up approaches are two broad division of production of nanoscale materials in general. However, both the approaches have their own limits as far as large-scale production and cost involved are concerned. Therefore, novel new techniques are desired to be developed to optimize production and cost. Directed self-assembly seems to be a promising technique in this regard; which can work as a bridge between the top–down and bottom–up approaches. This article reviews how directed self-assembly as a technique has grown up and outlines its future prospects

    Toward Crystal Design in Organic Conductors and Superconductors

    Get PDF
    We have seen that many different types of intermolecular interactions in organic conducting cation radical salts. Hydrogen bonding between the donor molecules and the anions is weak but not negligible. The ionic Madelung energy is insufficient to completely intersperse anions and cations, thus the layers favored by the van der Waals interactions remain intact. The search for new conducting and superconducting salts has been mainly by trial-and-error methods, even though simple substitutions have been employed in order to obtain isostructural analogs of successful (e.g., superconducting) salts. However, even seemingly minor substitutions sometimes destroy the packing type, and different crystal structures result. Simulations with the aim at predicting crystal structures have not succeeded, mainly because the different interaction types are of comparable energy, and the delocalized and partial charges render the calculations of the ionic terms extremely unreliable. Clearly, the development of suitable crystal modeling techniques with predictive capabilities is one of the great needs of the field

    Dynamics of Disks and Warps

    Full text link
    This chapter reviews theoretical work on the stellar dynamics of galaxy disks. All the known collective global instabilities are identified, and their mechanisms described in terms of local wave mechanics. A detailed discussion of warps and other bending waves is also given. The structure of bars in galaxies, and their effect on galaxy evolution, is now reasonably well understood, but there is still no convincing explanation for their origin and frequency. Spiral patterns have long presented a special challenge, and ideas and recent developments are reviewed. Other topics include scattering of disk stars and the survival of thin disks.Comment: Chapter accepted to appear in Planets, Stars and Stellar Systems, vol 5, ed G. Gilmore. 32 pages, 17 figures. Includes minor corrections made in proofs. Uses emulateapj.st

    Relativistic Binaries in Globular Clusters

    Get PDF
    Galactic globular clusters are old, dense star systems typically containing 10\super{4}--10\super{7} stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of hard binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct {\it N}-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl
    corecore