26 research outputs found

    Case-mix and the use of control charts in monitoring mortality rates after coronary artery bypass

    Get PDF
    BACKGROUND: There is debate about the role of crude mortality rates and case-mix adjusted mortality rates in monitoring the outcomes of treatment. In the context of quality improvement a key purpose of monitoring is to identify special cause variation as this type of variation should be investigated to identify possible causes. This paper investigates agreement between the identification of special cause variation in risk adjusted and observed hospital specific mortality rates after coronary artery bypass grafting in New York hospitals. METHODS: Coronary artery bypass grafting mortality rates between 1994 and 2003 were obtained from the New York State Department of Health's cardiovascular reports for 41 hospitals. Cross-sectional control charts of crude (observed) and risk adjusted mortality rates were produced for each year. Special cause variation was defined as a data point beyond the 99.9% probability limits: hospitals showing special cause variation were identified for each year. Longitudinal control charts of crude (observed) and risk adjusted mortality rates were produced for each hospital with data for all ten years (n = 27). Special cause variation was defined as a data point beyond 99.9% probability limits, two out of three consecutive data points beyond 95% probability limits (two standard deviations from the mean) or a run of five consecutive points on one side of the mean. Years showing special cause variation in mortality were identified for each hospital. Cohen's Kappa was calculated for agreement between special causes identified in crude and risk-adjusted control charts. RESULTS: In cross sectional analysis the Cohen's Kappa was 0.54 (95% confidence interval: 0.28 to 0.78), indicating moderate agreement between the crude and risk-adjusted control charts with sensitivity 0.4 (95% confidence interval 0.17–0.69) and specificity 0.98 (95% confidence interval: 0.95–0.99). In longitudinal analysis, the Cohen's Kappa was 0.61 (95% confidence interval: 0.39 to 0.83) indicating good agreement between the tests with sensitivity 0.63 (95% confidence interval: 0.39–0.82) and specificity 0.98 (95% confidence interval: 0.96 to 0.99). CONCLUSION: There is moderate-good agreement between signals of special cause variation between observed and risk-adjusted mortality. Analysis of observed hospital specific CABG mortality over time and with other hospitals appears to be useful in identifying special causes of variation. Case-mix adjustment may not be essential for longitudinal monitoring of outcomes using control charts

    Seasonal Patterns of Body Temperature Daily Rhythms in Group-Living Cape Ground Squirrels Xerus inauris

    Get PDF
    Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (Ta). We measured core body temperature (Tb) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily Ta provided the greatest explanatory power for mean Tb whereas sunrise had greatest power for Tb acrophase. There were significant changes in mean Tb and Tb acrophase over time with mean Tb increasing and Tb acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in Tb, sometimes in excess of 5°C, were noted during the first hour post emergence, after which Tb remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to ‘offload’ heat. In addition, greater Tb amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their Ta-Tb gradient. Finally, there were significant effects of age and group size on Tb with a lower and less variable Tb in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile Tb which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable environment

    Sizing Up Allometric Scaling Theory

    Get PDF
    Metabolic rate, heart rate, lifespan, and many other physiological properties vary with body mass in systematic and interrelated ways. Present empirical data suggest that these scaling relationships take the form of power laws with exponents that are simple multiples of one quarter. A compelling explanation of this observation was put forward a decade ago by West, Brown, and Enquist (WBE). Their framework elucidates the link between metabolic rate and body mass by focusing on the dynamics and structure of resource distribution networks—the cardiovascular system in the case of mammals. Within this framework the WBE model is based on eight assumptions from which it derives the well-known observed scaling exponent of 3/4. In this paper we clarify that this result only holds in the limit of infinite network size (body mass) and that the actual exponent predicted by the model depends on the sizes of the organisms being studied. Failure to clarify and to explore the nature of this approximation has led to debates about the WBE model that were at cross purposes. We compute analytical expressions for the finite-size corrections to the 3/4 exponent, resulting in a spectrum of scaling exponents as a function of absolute network size. When accounting for these corrections over a size range spanning the eight orders of magnitude observed in mammals, the WBE model predicts a scaling exponent of 0.81, seemingly at odds with data. We then proceed to study the sensitivity of the scaling exponent with respect to variations in several assumptions that underlie the WBE model, always in the context of finite-size corrections. Here too, the trends we derive from the model seem at odds with trends detectable in empirical data. Our work illustrates the utility of the WBE framework in reasoning about allometric scaling, while at the same time suggesting that the current canonical model may need amendments to bring its predictions fully in line with available datasets

    Sensory theories of developmental dyslexia: three challenges for research.

    Get PDF
    Recent years have seen the publication of a range of new theories suggesting that the basis of dyslexia might be sensory dysfunction. In this Opinion article, the evidence for and against several prominent sensory theories of dyslexia is closely scrutinized. Contrary to the causal claims being made, my analysis suggests that many proposed sensory deficits might result from the effects of reduced reading experience on the dyslexic brain. I therefore suggest that longitudinal studies of sensory processing, beginning in infancy, are required to successfully identify the neural basis of developmental dyslexia. Such studies could have a powerful impact on remediation.This is the accepted manuscript. The final version is available from NPG at http://www.nature.com/nrn/journal/v16/n1/abs/nrn3836.html
    corecore