34 research outputs found

    Photon CT Scanning of Advanced Ceramic Materials

    Get PDF
    Advanced ceramic materials (e. g. Si3N4, ZrO2, SiC, A12O3) are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems [1]. Although fracture toughness has been a constant problem, advanced ceramics are now being developed with fracture toughnesses close to those of metals [2]. Small size flaws (10–200 ÎŒm), small non-uniformities in density distributions (0.1–2%) present as long-range density gradients, and porous regions which can be seen as localized areas of slightly lower density, are critical in most ceramics. The need to detect these small flaws is causing a significant effort to be devoted towards nondestructive evaluation. Detection of “defects” such as those noted in engineering ceramics has presented problems for conventional non-destructive evaluation methods [3]

    Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films

    Get PDF
    Colloidal semiconductor nanocrystals have attracted significant interest for applications in solution-processable devices such as light-emitting diodes and solar cells. However, a poor understanding of charge transport in nanocrystal assemblies, specifically the relation between electrical conductance in dark and under light illumination, hinders their technological applicability. Here we simultaneously address the issues of 'dark' transport and photoconductivity in films of PbS nanocrystals, by incorporating them into optical field-effect transistors in which the channel conductance is controlled by both gate voltage and incident radiation. Spectrally resolved photoresponses of these devices reveal a weakly conductive mid-gap band that is responsible for charge transport in dark. The mechanism for conductance, however, changes under illumination when it becomes dominated by band-edge quantized states. In this case, the mid-gap band still has an important role as its occupancy (tuned by the gate voltage) controls the dynamics of band-edge charges

    Relationship Between [18F]FDOPA PET Uptake, Apparent Diffusion Coefficient (ADC), and Proliferation Rate in Recurrent Malignant Gliomas

    Full text link
    Purpose: Diffusion magnetic resonance imaging (MRI) and 6-[18F]fluoro-l-dopa ([18F]FDOPA) positron emission tomography (PET) are used to interrogate malignant tumor microenvironment. It remains unclear whether there is a relationship between [18F]FDOPA uptake, diffusion MRI estimates of apparent diffusion coefficient (ADC), and mitotic activity in the context of recurrent malignant gliomas, where the tumor may be confounded by the effects of therapy. The purpose of the current study is to determine whether there is a correlation between these imaging techniques and mitotic activity in malignant gliomas.Procedures: We retrospectively examined 29 patients with recurrent malignant gliomas who underwent structural MRI, diffusion MRI, and [18F]FDOPA PET prior to surgical resection. Qualitative associations were noted, and quantitative voxel-wise and median measurement correlations between [18F]FDOPA PET, ADC, and mitotic index were performed.Results: Areas of high [18F]FDOPA uptake exhibited low ADC and areas of hyperintensity T2/fluid-attenuated inversion recovery (FLAIR) with low [18F]FDOPA uptake exhibited high ADC. There was a significant inverse voxel-wise correlation between [18F]FDOPA and ADC for all patients. Median [18F]FDOPA uptake and median ADC also showed a significant inverse correlation. Median [18F]FDOPA uptake was positively correlated, and median ADC was inversely correlated with mitotic index from resected tumor tissue.Conclusions: A significant association may exist between [18F]FDOPA uptake, diffusion MRI, and mitotic activity in recurrent malignant gliomas

    Excited-State Dynamics in Colloidal Semiconductor Nanocrystals

    Get PDF

    Management of cleft lip and palate - Asian experience

    Get PDF
    Nuclear magnetic resonance imaging (NMRI) holds the potential for the non-destructive evaluation of ceramics and for the improvement of ceramic processing in general. It can provide valuable diagnostic information about the spatial variations of binders, plasticizers, sintering aids, deflocculants, and other organics in injection-molded and slip-cast green ceramics. Poor distribution of these organics, after subsequent processing steps such as sintering, hot isostatic pressing, and machining, can lead to final parts that are defective and/or with poor mechanical propertie
    corecore