21 research outputs found

    Effect of microcystin-LR on protein phosphatase 2A and its function in human amniotic epithelial cells*

    No full text
    Due to their toxicity, the increased distribution of microcystins (MCs) has become an important worldwide problem. MCs have been recognized as inhibitors of protein phosphatase 2A (PP2A) through their binding to the PP2A catalytic subunit. However, the exact mechanism of MC toxicity has not been elucidated, especially concerning the cellular response and its autoregulation. To further dissect the role of PP2A in MC-induced toxicity, the present study was undertaken to determine the response of PP2A in human amniotic epithelial (FL) cells treated with microcystin-LR (MCLR), one of the MC congeners. The results show that a low-dose treatment of MCLR in FL cells for 6 h induced an increase in PP2A activity, and a high-dose treatment of MCLR for 24 h decreased the activity of PP2A, as expected. The increased mRNA and protein levels of the PP2A C subunit may explain the increased activity of PP2A. Furthermore, MCLR altered microtubule post-translational modifications through PP2A. These results further clarify the underlying mechanism how MCLR affects PP2A and may be helpful for elucidating the complex toxicity of MCLR

    Interaction of salinity and cadmium stresses on mineral nutrients, sodium, and cadmium accumulation in four barley genotypes*

    No full text
    Interaction of salinity (NaCl) and cadmium (Cd) on growth, mineral nutrients, Na and Cd accumulation in four barley genotypes differing in salt tolerance was studied in a hydroponic experiment. Cd, NaCl and their combined stresses reduced Ca and Mg concentrations in roots and shoots, K concentration in shoots, increased K and Cu concentrations in roots relative to control, but had non-significant effect on micronutrients Cu, Fe and Mn concentrations in shoot. The three stresses reduced accumulation of most tested nutrients in both roots and shoots, except NaCl and NaCl+Cd stresses for root K and shoot Cu accumulation in salt tolerant genotypes. The salt tolerant genotypes did not have higher nutrient concentration and accumulation than the sensitive ones when exposed to Cd and NaCl stresses. In conclusion, the affecting mechanism of Cd stress on nutrients was to some extent different from salinity stress, and the NaCl+Cd stress was not equal to additional Cd and NaCl stresses, probably due to the different valence and competitive site of Na+ and Cd2+. NaCl addition in the Cd-containing medium caused remarkable reductions in both Cd concentration and accumulation, with the extent of reduction being also dependent on genotypes. The salt-tolerant genotypes had lower Na concentration than sensitive ones
    corecore