47 research outputs found

    Influence of Yb:YAG laser beam parameters on Haynes 188 weld fusion zone microstructure and mechanical properties

    Get PDF
    The weldability of 1.2 mm thick Haynes 188 alloy sheets by a disk Yb:YAG laser welding was examined. Butt joints were made, and the influence of parameters such as power, size, and shape of the spot, welding speed, and gas flow has been investigated. Based on an iconographic correlation approach, optimum process parameters were determined. Depending on the distribution of the power density (circular or annular), acceptable welds were obtained. Powers greater than 1700 W, welding speeds higher than 3.8 m mm1, and spot sizes between 160 and 320 lm were needed in the circular (small fiber) configuration. By comparison, the annular (large fiber) configuration required a power as high as 2500 W, and a welding speed less than 3.8 m min�1. The mechanical properties of the welds depended on their shape and microstructure, which in turn depended on the welding conditions. The content of carbides, the proportion of areas consisting of cellular and dendritic substructures, and the size of these substructures were used to explain the welded joint mechanical properties

    Exact results for hydrogen recombination on dust grain surfaces

    Full text link
    The recombination of hydrogen in the interstellar medium, taking place on surfaces of microscopic dust grains, is an essential process in the evolution of chemical complexity in interstellar clouds. The H_2 formation process has been studied theoretically, and in recent years also by laboratory experiments. The experimental results were analyzed using a rate equation model. The parameters of the surface, that are relevant to H_2 formation, were obtained and used in order to calculate the recombination rate under interstellar conditions. However, it turned out that due to the microscopic size of the dust grains and the low density of H atoms, the rate equations may not always apply. A master equation approach that provides a good description of the H_2 formation process was proposed. It takes into account both the discrete nature of the H atoms and the fluctuations in the number of atoms on a grain. In this paper we present a comprehensive analysis of the H_2 formation process, under steady state conditions, using an exact solution of the master equation. This solution provides an exact result for the hydrogen recombination rate and its dependence on the flux, the surface temperature and the grain size. The results are compared with those obtained from the rate equations. The relevant length scales in the problem are identified and the parameter space is divided into two domains. One domain, characterized by first order kinetics, exhibits high efficiency of H_2 formation. In the other domain, characterized by second order kinetics, the efficiency of H_2 formation is low. In each of these domains we identify the range of parameters in which, the rate equations do not account correctly for the recombination rate. and the master equation is needed.Comment: 23 pages + 8 figure

    Grain Destruction in Interstellar Shocks

    Get PDF
    Interstellar shock waves can erode and destroy grains present in the shocked gas, primarily as the result of sputtering and grain-grain collisions. Uncertainties in current estimates of sputtering yields are reviewed. Results are presented for the simple case of sputtering of fast grains being stopped in cold gas. An upper limit is derived for sputtering of refractory grains in C-type MHD shocks: shock speeds v_s \gtrsim 50 \kms are required for return of more than 30\% of the silicate to the gas phase. Sputtering can also be important for removing molecular ice mantles from grains in two-fluid MHD shock waves in molecular gas. Recent estimates of refractory grain lifetimes against destruction in shock waves are summarized, and the implications of these short lifetimes are discussed.Comment: To appear in Shocks in Astrophysics, ed. T.J. Millar. Talk given at conference Shocks in Astrophysics, Manchester, Jan. 1995. 13 pages with 6 figures: uuencoded compressed postscript. Also available as POPe-633 on http://astro.princeton.edu/~library/prep.htm

    IONIZATION DETECTION OF RYDBERG LINESHAPES IN STRONTIUM VAPOUR PERTURBED BY FOREIGN GASES

    No full text
    L'excitation à deux photons laser à été utilisée pour obtenir des paramètres de forme des profils de raie pour des niveaux Rydberg du Sr perturbés par des collisions. Les élargissements et les déplacements des niveaux 5sns 1S0 et 5snd 1D2 (7 ≤ n ≤ 52) en présence des gaz He, Ar, Xe à des pressions allant jusqu'à une atmosphère, sont donnés et comparés aux valeurs théoriques. L'observation de structures satellites pour les niveaux de Rydberg peu élevés est aussi présentée.Using laser two-photon excitation and ionization detection, we report lineshape parameters for collisionally perturbed Rydberg levels of Sr. With He, Ar, Kr and Xe as perturber gases at pressures up to one atmosphere, the broadening and shift rates of 5sns 1S0 and 5snd 1D2 (7 ≤ n ≤ 52) are given and compared with theoretical predictions. The observation of satellite structures on low lying Rydberg levels are also presented
    corecore