4 research outputs found
TTree: Tree-Based State Generalization with Temporally Abstract Actions
In this chapter we describe the Trajectory Tree, or TTree, algorithm. TTree uses a small set of supplied policies to help solve a Semi-Markov Decision Problem (SMDP). The algorithm uses a learned tree based discretization of the state space as an abstract state description and both user supplied and auto-generated policies as temporally abstract actions. It uses a generative model of the world to sample the transition function for the abstract SMDP defined by those state and temporal abstractions, and then finds a policy for that abstract SMDP. This policy for the abstract SMDP can then be mapped back..