31 research outputs found
Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation
Methane oxidation in the anoxic sediments of Skan Bay, Alaska resulted in fractionation of carbon and hydrogen isotopes in methane. Isotope fractionation factors were estimated by fitting methane concentration, δ13C‐CH4, and δD‐CH4 data with depth distributions predicted by an open system, steady state model. Assuming that molecular diffusion coefficients for 12CH4, 13CH4, and12CH3D are identical, the predicted fractionation factors were 1.0088±0.0013 and 1.157±0.023 for carbon and hydrogen isotopes, respectively. If aqueous diffusion coefficients for the different isotopic species of methane differ significantly, the predicted fractionation factors are larger by an amount proportional to the diffusion isotope effect
Spectral signatures of photosynthesis I: Review of Earth organisms
Why do plants reflect in the green and have a 'red edge' in the red, and
should extrasolar photosynthesis be the same? We provide: 1) a brief review of
how photosynthesis works; 2) an overview of the diversity of photosynthetic
organisms, their light harvesting systems, and environmental ranges; 3) a
synthesis of photosynthetic surface spectral signatures; 4) evolutionary
rationales for photosynthetic surface reflectance spectra with regard to
utilization of photon energy and the planetary light environment. Given the
surface incident photon flux density spectrum and resonance transfer in light
harvesting, we propose some rules with regard to where photosynthetic pigments
will peak in absorbance: a) the wavelength of peak incident photon flux; b) the
longest available wavelength for core antenna or reaction center pigments; and
c) the shortest wavelengths within an atmospheric window for accessory
pigments. That plants absorb less green light may not be an inefficient legacy
of evolutionary history, but may actually satisfy the above criteria.Comment: 69 pages, 7 figures, forthcoming in Astrobiology March 200