3 research outputs found

    Multiscale studies of the three-dimensional dayside X-line

    Get PDF
    AbstractWe review recent experience from the Cluster, Double Star, and THEMIS missions for lessons that apply to the upcoming Magnetospheric Multiscale Mission (MMS) being developed for launch in 2014. On global scales, simulation and statistical studies lead to mean configurations of dayside reconnection, implying specific relative alignments of the inflow magnetic fields and X-line, with implications for MMS operations designed to maximize the number of close encounters with the diffusion region. At intermediate MHD-to-ion scales, reconstruction of features created by one or two X-lines have developed to the point where data from a cluster of spacecraft can determine their temporal trends and the approximate three-dimensional X-line structure. Recent petascale particle-in-cell (PIC) simulations of reconnection encompass three spatial dimensions with excellent resolution, and make striking predictions of electron scale physics that creates complex interacting flux ropes under component reconnection. High time resolution measurements from MMS will determine the detailed electron scale kinetics embedded within the global and MHD–ion scale contexts. These developments will lead to the refinement of our three-dimensional multiscale picture of reconnection, yielding improved understanding of the global, MHD, and local physics controlling the onset or quenching, variability, and mean rate of reconnection. This in turn will enable improved predictability of the structural features created by transient reconnection, and their space weather consequences

    Heliosheath Processes and the Structure of the Heliopause: Modeling Energetic Particles, Cosmic Rays, and Magnetic Fields

    No full text
    corecore