892 research outputs found
Fresh equatorial jets
A vertically sheared eastward jet in the Equatorial pacific in late 1991 and early 1992 carried relatively fresh water from the Western Pacific overriding the saltier surface layer of the central region. Salinity anomalies of about -1.0 psu were observed over a period of several months in a surface layer 50 m thick near the equator. Below this fresh layer there was a steep halocline having very little temperature stratification, so that the density changes were dominated by salinity. In December 1991, eastward surface velocities in the fresh jet at 170°W were 100 cm s-1 with a shear of about 40 cm s-1 in the top 100 m; the core of the jet was about 200 km in width, centered at 1.5°S. The jet decayed and vanished over the next few months, though the surface halocline remained. (D'après résumé d'auteur
High-precision determination of transition amplitudes of principal transitions in Cs from van der Waals coefficient C_6
A method for determination of atomic dipole matrix elements of principal
transitions from the value of dispersion coefficient C_6 of molecular
potentials correlating to two ground-state atoms is proposed. The method is
illustrated on atomic Cs using C_6 deduced from high-resolution Feshbach
spectroscopy. The following reduced matrix elements are determined < 6S_{1/2}
|| D || 6P_{1/2} > =4.5028(60) |e| a0 and
=6.3373(84) |e| a0 (a0= 0.529177 \times 10^{-8} cm.) These matrix elements are
consistent with the results of the most accurate direct lifetime measurements
and have a similar uncertainty. It is argued that the uncertainty can be
considerably reduced as the coefficient C_6 is constrained further.Comment: 4 pages; 3 fig
High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers
Van der Waals coefficients for the heteronuclear alkali-metal dimers of Li,
Na, K, Rb, Cs, and Fr are calculated using relativistic ab initio methods
augmented by high-precision experimental data. We argue that the uncertainties
in the coefficients are unlikely to exceed about 1%.Comment: 11 pages, 2 figs, graphicx.st
Precise calculation of parity nonconservation in cesium and test of the standard model
We have calculated the 6s-7s parity nonconserving (PNC) E1 transition
amplitude, E_{PNC}, in cesium. We have used an improved all-order technique in
the calculation of the correlations and have included all significant
contributions to E_{PNC}. Our final value E_{PNC} = 0.904 (1 +/- 0.5 %) \times
10^{-11}iea_{B}(-Q_{W}/N) has half the uncertainty claimed in old calculations
used for the interpretation of Cs PNC experiments. The resulting nuclear weak
charge Q_{W} for Cs deviates by about 2 standard deviations from the value
predicted by the standard model.Comment: 24 pages, 8 figure
Measurement of a small atmospheric ratio
From an exposure of 25.5~kiloton-years of the Super-Kamiokande detector, 900
muon-like and 983 electron-like single-ring atmospheric neutrino interactions
were detected with momentum MeV/, MeV/, and
with visible energy less than 1.33 GeV. Using a detailed Monte Carlo
simulation, the ratio was measured to be , consistent with previous results from the
Kamiokande, IMB and Soudan-2 experiments, and smaller than expected from
theoretical models of atmospheric neutrino production.Comment: 14 pages with 5 figure
Calibration of Super-Kamiokande Using an Electron Linac
In order to calibrate the Super-Kamiokande experiment for solar neutrino
measurements, a linear accelerator (LINAC) for electrons was installed at the
detector. LINAC data were taken at various positions in the detector volume,
tracking the detector response in the variables relevant to solar neutrino
analysis. In particular, the absolute energy scale is now known with less than
1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM
Measurement of radon concentrations at Super-Kamiokande
Radioactivity from radon is a major background for observing solar neutrinos
at Super-Kamiokande. In this paper, we describe the measurement of radon
concentrations at Super-Kamiokande, the method of radon reduction, and the
radon monitoring system. The measurement shows that the current low-energy
event rate between 5.0 MeV and 6.5 MeV implies a radon concentration in the
Super-Kamiokande water of less than 1.4 mBq/m.Comment: 11 pages, 4 figure
- …