40 research outputs found

    Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    Full text link
    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/square-root(2) as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble's pressure more in line with that of the adjacent material. Suggestions for future work are made.Comment: 9 pages, refereed, accepted for publication in the proceedings of the "From the Outer Heliosphere to the Local Bubble: Comparisons of New Observations with Theory" conference and in Space Science Review

    What Physical Processes Drive the Interstellar Medium in the Local Bubble?

    Get PDF
    Recent 3D high-resolution simulations of the interstellar medium in a star form- ing galaxy like the Milky Way show that supernova explosions are the main driver of the structure and evolution of the gas. Its physical state is largely controlled by turbulence due to the high Reynolds numbers of the average flows. For a constant supernova rate a dynam- ical equilibrium is established within 200 Myr of simulation as a consequence of the setup of a galactic fountain. The resulting interstellar medium reveals a typical density/pressure pattern, i.e. distribution of so-called gas phases, on scales of 500–700 pc, with interstellar bubbles being a common phenomenon just like the Local Bubble and the Loop I superbub- ble, which are assumed to be interacting. However, modeling the Local Bubble is special, because it is driven by a moving group, passing through its volume, as it is inferred from the analysis of Hipparcos data. A detailed analysis reveals that between 14 and 19 super- novae have exploded during the last 15 Myr. The age of the Local Bubble is derived from comparison with HI and UV absorption line data to be 14.5±0.7 Myr. We further predict the 0.4merging of the two bubbles in about 3 Myr from now, when the interaction shell starts to fragment. The Local Cloud and its companion HI clouds are the consequence of a dynamical instability in the interaction shell between the Local and the Loop I bubble

    A Delphi-method-based consensus guideline for definition of treatment-resistant depression for clinical trials

    Get PDF
    Criteria for treatment-resistant depression (TRD) and partially responsive depression (PRD) as subtypes of major depressive disorder (MDD) are not unequivocally defined. In the present document we used a Delphi-method-based consensus approach to define TRD and PRD and to serve as operational criteria for future clinical studies, especially if conducted for regulatory purposes. We reviewed the literature and brought together a group of international experts (including clinicians, academics, researchers, employees of pharmaceutical companies, regulatory bodies representatives, and one person with lived experience) to evaluate the state-of-the-art and main controversies regarding the current classification. We then provided recommendations on how to design clinical trials, and on how to guide research in unmet needs and knowledge gaps. This report will feed into one of the main objectives of the EUropean Patient-cEntric clinicAl tRial pLatforms, Innovative Medicines Initiative (EU-PEARL, IMI) MDD project, to design a protocol for platform trials of new medications for TRD/PRD. © 2021, The Author(s).EU/EFPIA/Innovative Medicines Initiative 2 Joint Undertaking

    Feint Lines: Notes on the Creation of a Skateboard Choreography

    Get PDF
    Magnetic fields on a range of scales play a large role in the ecosystems of galaxies, both in the galactic disk and in the extended layers of gas away from the plane. Observing magnetic field strength, structure and orientation is complex, and necessarily indirect. Observational data of magnetic fields in the halo of the Milky Way are scarce, and non-conclusive about the large-scale structure of the field. In external galaxies, various large-scale configurations of magnetic fields are measured, but many uncertainties about exact configurations and their origin remain. There is a strong interaction between magnetic fields and other components in the interstellar medium such as ionized and neutral gas and cosmic rays. The energy densities of these components are comparable on large scales, indicating that magnetic fields are not passive tracers but that magnetic field feedback on the other interstellar medium components needs to be taken into account.Comment: 13 pages, 7 figures. Accepted in Space Science Review

    The Galactic Environment of the Sun: Interstellar Material Inside and Outside of the Heliosphere

    Full text link

    All that I had is gone

    No full text
    https://digitalcommons.usf.edu/aa_sheet_music/1001/thumbnail.jp

    Rate constants for hydrogen abstraction from alkoxides by a perfluoroalkyl radical. An oxyanion accelerated process

    Get PDF
    A combination of laser flash photolysis and competitive kinetic methods has been used to measure the absolute bimolecular rate constants for hydrogen atom abstraction in water from a series of fluorinated alkoxides and aldehyde hydrates by the perfluoroalkyl radical, CF2CF2OCF 2CF2SO3 -Na+. The bimolecular rate constants observed for the \u3b2-fluorinated alkoxides were in the 105 M-1 s-1 range, such rates representing enhancements (relative to the respective alcohols) of between 100 and almost 1000-fold, depending on the reactivity of the alkoxide. Likewise, the monobasic sodium salts of chloral and fluoral hydrate exhibit similar rate enhancements, relative to their respective hydrates.Peer reviewed: YesNRC publication: Ye

    Rate constants for hydrogen abstraction from alkoxides by a perfluoroalkyl radical. An oxyanion accelerated process

    No full text
    A combination of laser flash photolysis and competitive kinetic methods has been used to measure the absolute bimolecular rate constants for hydrogen atom abstraction in water from a series of fluorinated alkoxides and aldehyde hydrates by the perfluoroalkyl radical, CF2CF2OCF 2CF2SO3 -Na+. The bimolecular rate constants observed for the \u3b2-fluorinated alkoxides were in the 105 M-1 s-1 range, such rates representing enhancements (relative to the respective alcohols) of between 100 and almost 1000-fold, depending on the reactivity of the alkoxide. Likewise, the monobasic sodium salts of chloral and fluoral hydrate exhibit similar rate enhancements, relative to their respective hydrates.Peer reviewed: YesNRC publication: Ye
    corecore