59 research outputs found
Turbidite Megabeds in an Oceanic Rift Valley Recording Jokulhlaups of Late Pleistocene Glacial Lakes of the Western United States
Escanaba Trough is the southernmost segment of the Gorda Ridge and is filled by sandy turbidites locally exceeding 500 m in thickness. New results from Ocean Drilling Program (ODP) Sites 1037 and 1038 that include accelerator mass spectrometry (AMS) C-14 dates and revised petrographic evaluation of the sediment provenance, combined with high-resolution seismic-reflection profiles, provide a lithostratigraphic framework for the turbidite deposits. Three fining-upward units of sandy turbidites from the upper 365 m at ODP Site 1037 can be correlated with sediment recovered at ODP Site 1038 and Deep Sea Drilling Program (DSDP) Site 35. Six AMS C-14 ages in the upper 317 m of the sequence at Site 1037 indicate that average deposition rates exceeded 10 m/k.yr. between 32 and 11 ka, with nearly instantaneous deposition of one similar to 60-m interval of sand. Petrography of the sand beds is consistent with a Columbia River source for the entire sedimentary sequence in Escanaba Trough. High-resolution acoustic stratigraphy shows that the turbidites in the upper 60 m at Site 1037 provide a characteristic sequence of key reflectors that occurs across the floor of the entire Escanaba Trough. Recent mapping of turbidite systems in the northeast Pacific Ocean suggests that the turbidity currents reached the Escanaba Trough along an 1100-km-long pathway from the Columbia River to the west flank of the Gorda Ridge. The age of the upper fining-upward unit of sandy turbidites appears to correspond to the latest Wisconsinan outburst of glacial Lake Missoula. Many of the outbursts, or jokulhlaups, from the glacial lakes probably continued flowing as hyperpycnally generated turbidity currents on entering the sea at the mouth of the Columbia River
Intraâclinothem variability in sedimentary texture and process regime recorded down slope profiles
Shelfâmargin clinothem successions can archive process interactions at the shelf to slope transition, and their architecture provides constraints on the interplay of factors that control basinâmargin evolution. However, detailed textural analysis and facies distributions from shelf to slope transitions remain poorly documented. This study uses quantitative grainâsize and sorting data from coeval shelf and slope deposits of a single clinothem that crops out along a 5 km long, dipâparallel transect of the Eocene Sobrarbe Deltaic Complex (Ainsa Basin, southâcentral Pyrenees, Spain). Systematic sampling of sandstone beds tied to measured sections has captured vertical and basinward changes in sedimentary texture and facies distributions at an intraâclinothem scale. Two types of hyperpycnal flowârelated slope deposits, both rich in mica and terrestrial organic matter, are differentiated according to grain size, sorting and bed geometry: (i) sustained hyperpycnal flow deposits, which are physically linked to coarse channelized sediments in the shelf setting and which deposit sand down the complete slope profile; (ii) episodic hyperpycnal flow deposits, which are disconnected from, and incise into, shelf sands and which are associated with sediment bypass of the proximal slope and coarseâgrained sand deposition on the medial and distal slope. Both types of hyperpycnites are interbedded with relatively homogenous, organicâfree and micaâfree, wellâsorted, very fineâgrained sandstones, which are interpreted to be remobilized from waveâdominated shelf environments; these waveâdominated deposits are found only on the proximal and medial slope. Coarseâgrained sediment bypass into the deeperâwater slope settings is therefore dominated by episodic hyperpycnal flows, whilst sustained hyperpycnal flows and turbidity currents remobilizing waveâdominated shelf deposits are responsible for the full range of grain sizes in the proximal and medial slope, thus facilitating clinoform progradation. This novel dataset highlights previously undocumented intraâclinothem variability related to updip changes in the shelf processâregime, which is therefore a key factor controlling downdip architecture and resulting sedimentary texture
Variability in form and growth of sediment waves on turbidite channel levees
Marine Geology, v. 192, n. 1, p. 23-58, 2002. http://dx.doi.org/10.1016/S0025-3227(02)00548-0International audienc
- âŠ