29 research outputs found

    Permeability and conductivity of platelet-reinforced membranes and composites

    Full text link
    We present large scale simulations of the diffusion constant DD of a random composite consisting of aligned platelets with aspect ratio a/b>>1a/b>>1 in a matrix (with diffusion constant D0D_0) and find that D/D0=1/(1+c1x+c2x2)D/D_0 = 1/(1+ c_1 x + c_2 x^2), where x=avf/bx= a v_f/b and vfv_f is the platelet volume fraction. We demonstrate that for large aspect ratio platelets the pair term (x2x^2) dominates suggesting large property enhancements for these materials. However a small amount of face-to-face ordering of the platelets markedly degrades the efficiency of platelet reinforcement.Comment: RevTeX, 5 pages, 4 figures, submitted to PR

    Phase separating binary fluids under oscillatory shear

    Full text link
    We apply lattice Boltzmann methods to study the segregation of binary fluid mixtures under oscillatory shear flow in two dimensions. The algorithm allows to simulate systems whose dynamics is described by the Navier-Stokes and the convection-diffusion equations. The interplay between several time scales produces a rich and complex phenomenology. We investigate the effects of different oscillation frequencies and viscosities on the morphology of the phase separating domains. We find that at high frequencies the evolution is almost isotropic with growth exponents 2/3 and 1/3 in the inertial (low viscosity) and diffusive (high viscosity) regimes, respectively. When the period of the applied shear flow becomes of the same order of the relaxation time TRT_R of the shear velocity profile, anisotropic effects are clearly observable. In correspondence with non-linear patterns for the velocity profiles, we find configurations where lamellar order close to the walls coexists with isotropic domains in the middle of the system. For particular values of frequency and viscosity it can also happen that the convective effects induced by the oscillations cause an interruption or a slowing of the segregation process, as found in some experiments. Finally, at very low frequencies, the morphology of domains is characterized by lamellar order everywhere in the system resembling what happens in the case with steady shear.Comment: 1 table and 12 figures in .gif forma

    Ionic and electronic structure of sodium clusters up to N=59

    Get PDF
    We determined the ionic and electronic structure of sodium clusters with even electron numbers and 2 to 59 atoms in axially averaged and three-dimensional density functional calculations. A local, phenomenological pseudopotential that reproduces important bulk and atomic properties and facilitates structure calculations has been developed. Photoabsorption spectra have been calculated for Na2\mathrm{Na}_2, Na8\mathrm{Na}_8, and Na9+\mathrm{Na}_9^+ to Na59+\mathrm{Na}_{59}^+. The consistent inclusion of ionic structure considerably improves agreement with experiment. An icosahedral growth pattern is observed for Na19+\mathrm{Na}_{19}^+ to Na59+\mathrm{Na}_{59}^+. This finding is supported by photoabsorption data.Comment: To appear in Phys. Rev. B 62. Version with figures in better quality can be requested from the author
    corecore