590 research outputs found
Effect of farnesol on Candida dubliniensis morphogenesis
Cell–cell signalling in Candida albicans is a known phenomenon and farnesol was identified as a quorum sensing molecule determining the yeast morphology. The aim of this work was to verify if farnesol had a similar effect on Candida dubliniensis, highlighting the effect of farnesol on Candida spp. morphogenesis.
Methods and Results: Two different strains of C. dubliniensis and one of C. albicans were grown both in RPMI 1640 and in serum in the presence of absence of farnesol. At 150 μmol l -1 farnesol the growth rate of both Candida species was not affected. On the contrary, farnesol inhibited hyphae and pseudohyphae formation in C. dubliniensis.
Conclusion: Farnesol seems to mediate cell morphology in both Candida species.
Significance and Impact of the Study: The effect of farnesol on C. dubliniensis
morphology was not reported previously.Fundação para a Ciência e a Tecnologia (FCT
The Sachs-Wolfe Effect: Gauge Independence and a General Expression
In this paper we address two points concerning the Sachs-Wolfe effect: (i)
the gauge independence of the observable temperature anisotropy, and (ii) a
gauge-invariant expression of the effect considering the most general situation
of hydrodynamic perturbations. The first result follows because the gauge
transformation of the temperature fluctuation at the observation event only
contributes to the isotropic temperature change which, in practice, is absorbed
into the definition of the background temperature. Thus, we proceed without
fixing the gauge condition, and express the Sachs-Wolfe effect using the
gauge-invariant variables.Comment: 5 pages, closer to published versio
Markov Chain Monte Carlo Exploration of Minimal Supergravity with Implications for Dark Matter
We explore the full parameter space of Minimal Supergravity (mSUGRA),
allowing all four continuous parameters (the scalar mass m_0, the gaugino mass
m_1/2, the trilinear coupling A_0, and the ratio of Higgs vacuum expectation
values tan beta) to vary freely. We apply current accelerator constraints on
sparticle and Higgs masses, and on the b -> s gamma branching ratio, and
discuss the impact of the constraints on g_mu-2. To study dark matter, we apply
the WMAP constraint on the cold dark matter density. We develop Markov Chain
Monte Carlo (MCMC) techniques to explore the parameter regions consistent with
WMAP, finding them to be considerably superior to previously used methods for
exploring supersymmetric parameter spaces. Finally, we study the reach of
current and future direct detection experiments in light of the WMAP
constraint.Comment: 16 pages, 4 figure
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
Effect of tensor couplings in a relativistic Hartree approach for finite nuclei
The relativistic Hartree approach describing the bound states of both
nucleons and anti-nucleons in finite nuclei has been extended to include tensor
couplings for the - and -meson. After readjusting the parameters
of the model to the properties of spherical nuclei, the effect of
tensor-coupling terms rises the spin-orbit force by a factor of 2, while a
large effective nucleon mass sustains. The overall
nucleon spectra of shell-model states are improved evidently. The predicted
anti-nucleon spectra in the vacuum are deepened about 20 -- 30 MeV.Comment: 31 pages, 4 postscript figures include
Measurement of the Decay Asymmetry Parameters in and
We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\
decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for
the decay mode and \aLC = -0.45\pm 0.31 \pm
0.06 for the decay mode . By combining these
measurements with the previously measured decay rates, we have extracted the
parity-violating and parity-conserving amplitudes. These amplitudes are used to
test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures
as uuencoded postscript. Also available as
http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p
Measurement of the branching fraction for
We have studied the leptonic decay of the resonance into tau
pairs using the CLEO II detector. A clean sample of tau pair events is
identified via events containing two charged particles where exactly one of the
particles is an identified electron. We find . The result is consistent with
expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS
94/1297, CLEO 94-20 (submitted to Physics Letters B
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
Production and Decay of D_1(2420)^0 and D_2^*(2460)^0
We have investigated and final states and
observed the two established charmed mesons, the with mass
MeV/c and width MeV/c and
the with mass MeV/c and width
MeV/c. Properties of these final states, including
their decay angular distributions and spin-parity assignments, have been
studied. We identify these two mesons as the doublet predicted
by HQET. We also obtain constraints on {\footnotesize } as a function of the cosine of the relative phase of the two
amplitudes in the decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by
sending mail to: [email protected]
- …
