327 research outputs found
On the Convergence of Ritz Pairs and Refined Ritz Vectors for Quadratic Eigenvalue Problems
For a given subspace, the Rayleigh-Ritz method projects the large quadratic
eigenvalue problem (QEP) onto it and produces a small sized dense QEP. Similar
to the Rayleigh-Ritz method for the linear eigenvalue problem, the
Rayleigh-Ritz method defines the Ritz values and the Ritz vectors of the QEP
with respect to the projection subspace. We analyze the convergence of the
method when the angle between the subspace and the desired eigenvector
converges to zero. We prove that there is a Ritz value that converges to the
desired eigenvalue unconditionally but the Ritz vector converges conditionally
and may fail to converge. To remedy the drawback of possible non-convergence of
the Ritz vector, we propose a refined Ritz vector that is mathematically
different from the Ritz vector and is proved to converge unconditionally. We
construct examples to illustrate our theory.Comment: 20 page
Three-Particle Correlations from Parton Cascades in Au+Au Collisions
We present a study of three-particle correlations among a trigger particle
and two associated particles in Au + Au collisions at = 200 GeV
using a multi-phase transport model (AMPT) with both partonic and hadronic
interactions. We found that three-particle correlation densities in different
angular directions with respect to the triggered particle (`center', `cone',
`deflected', `near' and `near-away') increase with the number of participants.
The ratio of `deflected' to `cone' density approaches to 1.0 with the
increasing of number of participants, which indicates that partonic Mach-like
shock waves can be produced by strong parton cascades in central Au+Au
collisions.Comment: 9 pages, 6 figures; Final version to appear in Physics Letters
The dynamics of reinforced particle migration in laser powder bed fusion of Ni-based composite
The dynamics of the reinforced particles' migration remains unclear during the rapid non-equilibrium laser powder bed fusion (LPBF) process. Conducting real-time observations to obtain a comprehensive understanding of the reinforcements' movement is challenging due to the complex physical phenomena that occur during experimentation. The proposed numerical simulation in the present study incorporates a Lagrangian discrete phase model (DPM) to simulate the added submicrometre-sized TiC particles. The simulation results indicate that the migration of TiC particles was primarily induced by the combination of recoil pressure and Marangoni convection force. The TiC particles were also noted to be relatively uniformly distributed in the LPBF-fabricated Hastelloy X-1 wt% TiC composite under a 600 mm/s scanning speed. The present study offers insights into understanding the dynamics of added reinforced phases within the LPBF additive-manufacturing process to further accelerate the development of advanced metal matrix composites processed using the LPBF process
Scaling of anisotropy flows in intermediate energy heavy ion collisions
Anisotropic flows (, and ) of light nuclear clusters are
studied by a nucleonic transport model in intermediate energy heavy ion
collisions. The number-of-nucleon scalings of the directed flow () and
elliptic flow () are demonstrated for light nuclear clusters. Moreover,
the ratios of of nuclear clusters show a constant value of 1/2
regardless of the transverse momentum. The above phenomena can be understood by
the coalescence mechanism in nucleonic level and are worthy to be explored in
experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus
Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the
proceeding issue in Nuclear Physics
Di-hadron azimuthal correlation and Mach-like cone structure in parton/hadron transport model
In the framework of a multi-phase transport model (AMPT) with both partonic
and hadronic interactions, azimuthal correlations between trigger particles and
associated scattering particles have been studied by the mixing-event
technique. The momentum ranges of these particles are
GeV/ and GeV/ (soft), or 4
GeV/ and GeV/ (hard) in Au + Au collisions at
= 200 GeV. A Mach-like structure has been observed in
correlation functions for central collisions. By comparing scenarios with and
without parton cascade and hadronic rescattering, we show that both partonic
and hadronic dynamical mechanisms contribute to the Mach-like structure of the
associated particle azimuthal correlations. The contribution of hadronic
dynamical process can not be ignored in the emergence of Mach-like correlations
of the soft scattered associated hadrons. However, hadronic rescattering alone
cannot reproduce experimental amplitude of Mach-like cone on away-side, and the
parton cascade process is essential to describe experimental amplitude of
Mach-like cone on away-side. In addition, both the associated multiplicity and
the sum of decrease, whileas the increases, with the impact
parameter in the AMPT model including partonic dynamics from string melting
scenario.Comment: 9 pages, 5 figures; Physics Letters B 641, 362-367 (2006
Scaling of Anisotropic Flow and Momentum-Space Densities for Light Particles in Intermediate Energy Heavy Ion Collisions
Anisotropic flows ( and ) of light nuclear clusters are studied by
Isospin-Dependent Quantum Molecular Dynamics model for the system of Kr
+ Sn at intermediate energy and large impact parameters.
Number-of-nucleon scaling of the elliptic flow () are demonstrated for the
light fragments up to = 4, and the ratio of shows a constant
value of 1/2. In addition, the momentum-space densities of different clusters
are also surveyed as functions of transverse momentum, in-plane transverse
momentum and azimuth angle relative to the reaction plane. The results can be
essentially described by momentum-space power law. All the above phenomena
indicate that there exists a number-of-nucleon scaling for both anisotropic
flow and momentum-space densities for light clusters, which can be understood
by the coalescence mechanism in nucleonic degree of freedom for the cluster
formation.Comment: 8 pages, 3 figures; to be published in Physics Letters
Isolation, Characterization and Quantity Determination of Aristolochic Acids, Toxic Compounds in Aristolochia bracteolata L.
Background Aristolochic Acids (AAs) are major components of plants in Aristolochia and have been found to be nephrotoxic, carcinogenic and mutagenic. Herein reported are the isolation, identification and quantity determination methods of Aristolochic Acid-I (AA-I) and Aristolochic Acid-II (AA-II) toxic compounds of Aristolochia bracteolata indigenous to Central Sudan and medicinally used in diverse biological functions including analgesic and diuretic effects, treatment of tumors, malaria and/or fevers. Methods and results AAs mixture was extracted with methanol from the defatted material of Aristolochia bracteolata whole plant at room temperature and was isolated from the aqueous methanol extract by chloroform. Moreover, Silica-gel column chromatography and Preparative Thin Layer Chromatography (PTLC) using chloroform/methanol gradient mixtures were used to isolate AAs mixtures as a yellow crystalline solid. A preliminary detection of AAs was made by Thin Layer Chromatography (silica-gel, chloroform: methanol (6:1)). The Rf value of the acids mixture was 0.43-0.46. The presence of AAs in plant sample was confirmed by High Performance Liquid Chromatography/Ultraviolet (HPLC/UV) analysis using 1% acetic acid and methanol (40:60) as mobile phase and maximum absorption wave length of 250 nm. Quantitative determination of AA-II (49.03 g/kg) and AA-I (12.98 g/kg) was also achieved by HPLC/UV. Recommendation It is recommended that the use of Aristolochia bracteolata as a medicinal plant should be extremely limited or strictly prohibited. The chromatograms obtained in this study can serve as fingerprints to identify AAs in plant samples
Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China
A Nationwide Nitrogen Deposition Monitoring Network (NNDMN) containing 43 monitoring sites was established in China to measure gaseous NH3, NO2, and HNO3 and particulate NH4+ and NO3− in air and/or precipitation from 2010 to 2014. Wet/bulk deposition fluxes of Nr species were collected by precipitation gauge method and measured by continuous-flow analyzer; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet/bulk Nr deposition. On a national basis, the annual average concentrations (1.3–47.0 μg N m−3) and dry plus wet/bulk deposition fluxes (2.9–83.3 kg N ha−1 yr−1) of inorganic Nr species are ranked by land use as urban > rural > background sites and by regions as north China > southeast China > southwest China > northeast China > northwest China > Tibetan Plateau, reflecting the impact of anthropogenic Nr emission. Average dry and wet/bulk N deposition fluxes were 20.6 ± 11.2 (mean ± standard deviation) and 19.3 ± 9.2 kg N ha−1 yr−1 across China, with reduced N deposition dominating both dry and wet/bulk deposition. Our results suggest atmospheric dry N deposition is equally important to wet/bulk N deposition at the national scale. Therefore, both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health
Protons in near earth orbit
The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured
by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at
an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is
parameterized by a power law. Below the geomagnetic cutoff a substantial second
spectrum was observed concentrated at equatorial latitudes with a flux ~ 70
m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated
trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
Search for antihelium in cosmic rays
The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle
Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320
and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity
range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper
limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure
- …