10 research outputs found
Stellar evolution and modelling stars
In this chapter I give an overall description of the structure and evolution
of stars of different masses, and review the main ingredients included in
state-of-the-art calculations aiming at reproducing observational features. I
give particular emphasis to processes where large uncertainties still exist as
they have strong impact on stellar properties derived from large compilations
of tracks and isochrones, and are therefore of fundamental importance in many
fields of astrophysics.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
Predictions of total and total reaction cross sections for nucleon-nucleus scattering up to 300 MeV
Total reaction cross sections are predicted for nucleons scattering from various nuclei. Projectile energies to 300 MeV are considered. So also are mass variations of those cross sections at selected energies. All predictions have been obtained from coordinate space optical potentials formed by full folding effective two-nucleon (NN) interactions with one body density matrix elements (OBDME) of the nuclear ground states. Good comparisons with data result when effective NN interactions defined by medium modification of free NN t matrices are used. Coupled with analyses of differential cross sections, these results are sensitive to details of the model ground states used to describe nuclei