481 research outputs found
Mining Dynamic Document Spaces with Massively Parallel Embedded Processors
Currently Océ investigates future document management services. One of these services is accessing dynamic document spaces, i.e. improving the access to document spaces which are frequently updated (like newsgroups). This process is rather computational intensive. This paper describes the research conducted on software development for massively parallel processors. A prototype has been built which processes streams of information from specified newsgroups and transforms them into personal information maps. Although this technology does speed up the training part compared to a general purpose processor implementation, however, its real benefits emerges with larger problem dimensions because of the scalable approach. It is recommended to improve on quality of the map as well as on visualisation and to better profile the performance of the other parts of the pipeline, i.e. feature extraction and visualisation
Trained Immunity or Tolerance: Opposing Functional Programs Induced in Human Monocytes After Engagement of Various Pattern Recognition Receptors
Upon priming with Candida albicans or with the fungal cell wall component β-glucan, monocytes respond with an increased cytokine production upon restimulation, a phenomenon termed trained immunity. In contrast, the prestimulation of monocytes with lipopolysaccharide has long been known to induce tolerance. Because the vast majority of commensal microorganisms belong to bacterial or viral phyla, we sought to systematically investigate the functional reprogramming of monocytes induced by the stimulation of pattern recognition receptors (PRRs) with various bacterial or viral ligands. Monocytes were functionally programmed for either enhanced (training) or decreased (tolerance) cytokine production, depending on the type and concentration of ligand they encountered. The functional reprogramming of monocytes was also associated with cell shape, granulocity, and cell surface marker modifications. The training effect required p38- and Jun N-terminal protein kinase (JNK)-mediated mitogen-activated protein kinase (MAPK) signaling, with specific signaling patterns directing the functional fate of the cell. The long-term effects on the function of monocytes were mediated by epigenetic events, with both histone methylation and acetylation inhibitors blocking the training effects. In conclusion, our experiments identify the ability of monocytes to acquire adaptive characteristics after prior activation with a wide variety of ligands. Trained immunity and tolerance are two distinct and opposing functional programs induced by the specific microbial ligands engaging the monocytes
High-Spin Stretched States in Nuclei Excited via (p,n) Reactions
This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440
Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors
Peer reviewedPublisher PD
White matter hyperintensities mediate the association between blood-brain barrier leakage and information processing speed
Blood-brain barrier (BBB) leakage is considered an important underlying process in both cerebral small vessel disease (cSVD) and Alzheimer's disease (AD). The objective of this study was to examine associations between BBB leakage, cSVD, neurodegeneration, and cognitive performance across the spectrum from normal cognition to dementia. Leakage was measured with dynamic contrast-enhanced magnetic resonance imaging in 80 older participants (normal cognition, n = 32; mild cognitive impairment, n 34; clinical AD-type dementia, n = 14). Associations between leakage and white matter hyperintensity (WMH) volume, hippocampal volume, and cognition (information processing speed and memory performance) were examined with multivariable linear regression and mediation analyses. Leakage within the gray and white matter was positively associated with WMH volume (gray matter, p = 0.03; white matter, p = 0.01). A negative association was found between white matter BBB leakage and information processing speed performance, which was mediated by WMH volume. Leakage was not associated with hippocampal volume. WMH pathology is suggested to form a link between leakage and decline of information processing speed in older individuals with and without cognitive impairment. (C) 2019 Elsevier Inc. All rights reserved
Blood-brain barrier leakage and microvascular lesions in cerebral amyloid angiopathy
Background and Purpose-Cerebral amyloid angiopathy (CAA) is a common small vessel disease that independently effects cognition in older individuals. The pathophysiology of CAA and CAA-related bleeding remains poorly understood. In this postmortem study, we explored whether blood-brain barrier leakage is associated with CAA and microvascular lesions.Methods-Eleven CAA cases (median [IQR] age=69 years [65-79 years], 8 males) and 7 cases without neurological disease or brain lesions (median [IQR] age=77 years [68-92 years], 4 males) were analyzed. Cortical sections were sampled from each lobe, and IgG and fibrin extravasation (markers of blood-brain barrier leakage) were assessed with immunohistochemistry. We hypothesized that IgG and fibrin extravasation would be increased in CAA cases compared with controls, that this would be more pronounced in parietooccipital brain regions compared with frontotemporal brain regions in parallel with the posterior predilection of CAA, and would be associated with CAA severity and number of cerebral microbleeds and cerebral microinfarcts counted on ex vivo magnetic resonance imaging of the intact brain hemisphere.Results-Our results demonstrated increased IgG positivity in the frontotemporal (P=0.044) and parietooccipital (P=0.001) cortex in CAA cases compared with controls. Within CAA cases, both fibrin and IgG positivity were increased in parietooccipital brain regions compared with frontotemporal brain regions (P=0.005 and P=0.006, respectively). The percentage of positive vessels for fibrin and IgG was associated with the percentage of amyloid-beta-positive vessels (Spearman.=0.71, P=0.015 and Spearman.=0.73, P=0.011, respectively). Moreover, the percentage of fibrin and IgGpositive vessels, but not amyloid-beta-positive vessels, was associated with the number of cerebral microbleeds on magnetic resonance imaging (Spearman.=0.77, P=0.005 and Spearman.=0.70, P=0.017, respectively). Finally, we observed fibrin deposition in walls of vessels involved in cerebral microbleeds.Conclusions-Our results raise the possibility that blood-brain barrier leakage may be a contributory mechanism for CAArelated brain injury
Geometric origin of mechanical properties of granular materials
Some remarkable generic properties, related to isostaticity and potential
energy minimization, of equilibrium configurations of assemblies of rigid,
frictionless grains are studied. Isostaticity -the uniqueness of the forces,
once the list of contacts is known- is established in a quite general context,
and the important distinction between isostatic problems under given external
loads and isostatic (rigid) structures is presented. Complete rigidity is only
guaranteed, on stability grounds, in the case of spherical cohesionless grains.
Otherwise, the network of contacts might deform elastically in response to load
increments, even though grains are rigid. This sets an uuper bound on the
contact coordination number. The approximation of small displacements (ASD)
allows to draw analogies with other model systems studied in statistical
mechanics, such as minimum paths on a lattice. It also entails the uniqueness
of the equilibrium state (the list of contacts itself is geometrically
determined) for cohesionless grains, and thus the absence of plastic
dissipation. Plasticity and hysteresis are due to the lack of such uniqueness
and may stem, apart from intergranular friction, from small, but finite,
rearrangements, in which the system jumps between two distinct potential energy
minima, or from bounded tensile contact forces. The response to load increments
is discussed. On the basis of past numerical studies, we argue that, if the ASD
is valid, the macroscopic displacement field is the solution to an elliptic
boundary value problem (akin to the Stokes problem).Comment: RevTex, 40 pages, 26 figures. Close to published paper. Misprints and
minor errors correcte
- …