10 research outputs found

    Weak lensing, dark matter and dark energy

    Full text link
    Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the power of weak lensing as a cosmological probe.Comment: Invited review article for the GRG special issue on gravitational lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on three-point function and some references added. Matches the published versio

    Separating the Early Universe from the Late Universe: cosmological parameter estimation beyond the black box

    Full text link
    We present a method for measuring the cosmic matter budget without assumptions about speculative Early Universe physics, and for measuring the primordial power spectrum P*(k) non-parametrically, either by combining CMB and LSS information or by using CMB polarization. Our method complements currently fashionable ``black box'' cosmological parameter analysis, constraining cosmological models in a more physically intuitive fashion by mapping measurements of CMB, weak lensing and cluster abundance into k-space, where they can be directly compared with each other and with galaxy and Lyman alpha forest clustering. Including the new CBI results, we find that CMB measurements of P(k) overlap with those from 2dF galaxy clustering by over an order of magnitude in scale, and even overlap with weak lensing measurements. We describe how our approach can be used to raise the ambition level beyond cosmological parameter fitting as data improves, testing rather than assuming the underlying physics.Comment: Replaced to match accepted PRD version. Refs added. Combined CMB data and window functions at http://www.hep.upenn.edu/~max/pwindows.html or from [email protected]. 18 figs, 19 journal page

    The last stand before MAP: cosmological parameters from lensing, CMB and galaxy clustering

    Get PDF
    Cosmic shear measurements have now improved to the point where they deserve to be treated on par with CMB and galaxy clustering data for cosmological parameter analysis, using the full measured aperture mass variance curve rather than a mere phenomenological parametrization thereof. We perform a detailed 9-parameter analysis of recent lensing (RCS), CMB (up to Archeops) and galaxy clustering (2dF) data, both separately and jointly. CMB and 2dF data are consistent with a simple flat adiabatic scale-invariant model with Omega_Lambda=0.72+/-0.09, omega_cdm=0.115+/- 0.013, omega_b=0.024+/-0.003, and a hint of reionization around z~8. Lensing helps further tighten these constraints, but reveals tension regarding the power spectrum normalization: including the RCS survey results raises sigma8 significantly and forces other parameters to uncomfortable values. Indeed, sigma8 is emerging as the currently most controversial cosmological parameter, and we discuss possible resolutions of this sigma8 problem. We also comment on the disturbing fact that many recent analyses (including this one) obtain error bars smaller than the Fisher matrix bound. We produce a CMB power spectrum combining all existing experiments, and using it for a "MAP versus world" comparison next month will provide a powerful test of how realistic the error estimates have been in the cosmology community.Comment: Added references and Fisher error discussion. Combined CMB data, window and covariance matrix for January "MAP vs World" contest at http://www.hep.upenn.edu/~max/cmblsslens.html or from [email protected]

    References

    No full text

    Metabolomics

    No full text

    Cyanobacterial Associations

    No full text
    corecore