1,208 research outputs found
Results of the First Coincident Observations by Two Laser-Interferometric Gravitational Wave Detectors
We report an upper bound on the strain amplitude of gravitational wave bursts
in a waveband from around 800Hz to 1.25kHz. In an effective coincident
observing period of 62 hours, the prototype laser interferometric gravitational
wave detectors of the University of Glasgow and Max Planck Institute for
Quantum Optics, have set a limit of 4.9E-16, averaging over wave polarizations
and incident directions. This is roughly a factor of 2 worse than the
theoretical best limit that the detectors could have set, the excess being due
to unmodelled non-Gaussian noise. The experiment has demonstrated the viability
of the kind of observations planned for the large-scale interferometers that
should be on-line in a few years time.Comment: 11 pages, 2 postscript figure
QCD Strings as Constrained Grassmannian Sigma Model:
We present calculations for the effective action of string world sheet in R3
and R4 utilizing its correspondence with the constrained Grassmannian sigma
model. Minimal surfaces describe the dynamics of open strings while harmonic
surfaces describe that of closed strings. The one-loop effective action for
these are calculated with instanton and anti-instanton background, reprsenting
N-string interactions at the tree level. The effective action is found to be
the partition function of a classical modified Coulomb gas in the confining
phase, with a dynamically generated mass gap.Comment: 22 pages, Preprint: SFU HEP-116-9
Elastic and scattering at LHC
We discuss the possibility of measuring leading neutron production at the
LHC. These data could be used to extract from it and
cross-sections. In this note we give some estimates for the case of elastic
cross-sections and discuss related problems and prospects.Comment: 26 pages, 25 figures, to be published, minor text correction
LHC as and Collider
We propose an experiment at the LHC with leading neutron production.The
latter can be used to extract from it the total cross-sections. With
two leading neutrons we can get access to the total
cross-sections. In this note we give some estimates and discuss related
problems and prospects.Comment: 22 pages, 18 figures, 8 tables, to be publishe
The BES f_0(1810): a new glueball candidate
We analyze the f_0(1810) state recently observed by the BES collaboration via
radiative J/\psi decay to a resonant \phi\omega spectrum and confront it with
DM2 data and glueball theory. The DM2 group only measured \omega\omega decays
and reported a pseudoscalar but no scalar resonance in this mass region. A
rescattering mechanism from the open flavored KKbar decay channel is considered
to explain why the resonance is only seen in the flavor asymmetric \omega\phi
branch along with a discussion of positive C parity charmonia decays to
strengthen the case for preferred open flavor glueball decays. We also
calculate the total glueball decay width to be roughly 100 MeV, in agreement
with the narrow, newly found f_0, and smaller than the expected estimate of
200-400 MeV. We conclude that this discovered scalar hadron is a solid glueball
candidate and deserves further experimental investigation, especially in the
K-Kbar channel. Finally we comment on other, but less likely, possible
assignments for this state.Comment: 11 pages, 4 figures. Major substantive additions, including an
ab-initio, QCD-based computation of the glueball inclusive decay width,
evaluation of final state effects, and enhanced discussion of several
alternative possibilities. Our conclusions are unchanged: the BES f_0(1810)
is a promising glueball candidat
Tritium Beta Decay, Neutrino Mass Matrices and Interactions Beyond the Standard Model
The interference of charge-changing interactions, weaker than the V-A
Standard Model (SM) interaction and having a different Lorentz structure, with
that SM interaction, can, in principle, produce effects near the end point of
the Tritium beta decay spectrum which are of a different character from those
produced by the purely kinematic effect of neutrino mass expected in the
simplest extension of the SM. We show that the existence of more than one mass
eigenstate can lead to interference effects at the end point that are stronger
than those occurring over the entire spectrum. We discuss these effects both
for the special case of Dirac neutrinos and the more general case of Majorana
neutrinos and show that, for the present precision of the experiments, one
formula should suffice to express the interference effects in all cases.
Implications for "sterile" neutrinos are noted.Comment: 32 pages, LaTeX, 6 figures, PostScript; full discussion and changes
in notation from Phys. Lett. B440 (1998) 89, nucl-th/9807057; submitted to
Phys. Rev.
Statistical Theory of Spin Relaxation and Diffusion in Solids
A comprehensive theoretical description is given for the spin relaxation and
diffusion in solids. The formulation is made in a general
statistical-mechanical way. The method of the nonequilibrium statistical
operator (NSO) developed by D. N. Zubarev is employed to analyze a relaxation
dynamics of a spin subsystem. Perturbation of this subsystem in solids may
produce a nonequilibrium state which is then relaxed to an equilibrium state
due to the interaction between the particles or with a thermal bath (lattice).
The generalized kinetic equations were derived previously for a system weakly
coupled to a thermal bath to elucidate the nature of transport and relaxation
processes. In this paper, these results are used to describe the relaxation and
diffusion of nuclear spins in solids. The aim is to formulate a successive and
coherent microscopic description of the nuclear magnetic relaxation and
diffusion in solids. The nuclear spin-lattice relaxation is considered and the
Gorter relation is derived. As an example, a theory of spin diffusion of the
nuclear magnetic moment in dilute alloys (like Cu-Mn) is developed. It is shown
that due to the dipolar interaction between host nuclear spins and impurity
spins, a nonuniform distribution in the host nuclear spin system will occur and
consequently the macroscopic relaxation time will be strongly determined by the
spin diffusion. The explicit expressions for the relaxation time in certain
physically relevant cases are given.Comment: 41 pages, 119 Refs. Corrected typos, added reference
Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star
A search of the time-series photometry from NASA's Kepler spacecraft reveals
a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626
with a period of 290 days. The characteristics of the host star are well
constrained by high-resolution spectroscopy combined with an asteroseismic
analysis of the Kepler photometry, leading to an estimated mass and radius of
0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for
the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the
planet. The system passes a battery of tests for false positives, including
reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A
full BLENDER analysis provides further validation of the planet interpretation
by showing that contamination of the target by an eclipsing system would rarely
mimic the observed shape of the transits. The final validation of the planet is
provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year
span. Although the velocities do not lead to a reliable orbit and mass
determination, they are able to constrain the mass to a 3{\sigma} upper limit
of 124 MEarth, safely in the regime of planetary masses, thus earning the
designation Kepler-22b. The radiative equilibrium temperature is 262K for a
planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is
a rocky planet, it is the first confirmed planet with a measured radius to
orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap
Effect of Magnetic-Field on the Microstructure and Macrosegregation in Directionally Solidified Pb-Sn Alloys
An investigation into the influence of a transverse magnetic field (0.45 T) on the mushy zone morphology and macrosegregation in directionally solidified hypoeutectic Pb-Sn alloy shows that the field has no influence on the morphology of dendritic arrays. The field does, however, cause severe distortion in the cellular array morphology. Cellular arrayed growth with the magnetic field results in an extensive channel formation in the mushy zone, as opposed to the well-aligned and uniformly distributed cells formed in the absence of the field. The channels are produced due to the anisotropy in the thermosolutal convection caused by the magnetic field. Macrosegregation, however, along the length of the directionally solidified samples is not influenced by this magnetic field for either the cellular or dendritic arrays
Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results
We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ± 0.1 fm sâ2/âHz or (0.54 ± 0.01) Ă 10â15 g/âHz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ± 0.3) fm/âHz, about 2 orders of magnitude better than requirements. At f †0.5 mHz we observe a low-frequency tail that stays below 12 fm sâ2/âHz down to 0.1 mHz. This performance would allow for a space-based gravitational wave
observatory with a sensitivity close to what was originally foreseen for LISA
- âŠ