557 research outputs found
Cosmological constraints from galaxy clustering
In this manuscript I review the mathematics and physics that underpins recent
work using the clustering of galaxies to derive cosmological model constraints.
I start by describing the basic concepts, and gradually move on to some of the
complexities involved in analysing galaxy redshift surveys, focusing on the 2dF
Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky survey (SDSS).
Difficulties within such an analysis, particularly dealing with redshift space
distortions and galaxy bias are highlighted. I then describe current
observations of the CMB fluctuation power spectrum, and consider the importance
of measurements of the clustering of galaxies in light of recent experiments.
Finally, I provide an example joint analysis of the latest CMB and large-scale
structure data, leading to a set of parameter constraints.Comment: 30 pages, 13 figures. Lecture given at Third Aegean Summer School,
The invisible universe: Dark matter and Dark energ
Cosmological constraints on unparticle dark matter
In unparticle dark matter (unmatter) models the equation of state of the
unmatter is given by , where is the scaling factor.
Unmatter with such equations of state would have a significant impact on the
expansion history of the universe. Using type Ia supernovae (SNIa), the baryon
acoustic oscillation (BAO) measurements and the shift parameter of the cosmic
microwave background (CMB) to place constraints on such unmatter models we find
that if only the SNIa data is used the constraints are weak. However, with the
BAO and CMB shift parameter data added strong constraints can be obtained. For
the UDM model, in which unmatter is the sole dark matter, we find that
at 95% C.L. For comparison, in most unparticle physics models it is
assumed . For the CUDM model, in which unmatter co-exists with
cold dark matter, we found that the unmatter can at most make up a few percent
of the total cosmic density if , thus it can not be the major component
of dark matter.Comment: Replaced with revised version. BAO data is added to make a tighter
constraint. Version accepted for publication on Euro.Phys.J.
Cosmic Shear with Next Generation Redshift Surveys as a Cosmological Probe
The expansion of the universe causes spacetime curvature, distinguishing
between distances measured along and transverse to the line of sight. The ratio
of these distances, e.g. the cosmic shear distortion of a sphere defined by
observations of large scale structure as suggested by Alcock & Paczynski,
provides a method for exploring the expansion as a function of redshift. The
theoretical sensitivity to cosmological parameters, including the dark energy
equation of state, is presented. Remarkably, sensitivity to the time variation
of the dark energy equation of state is best achieved by observations at
redshifts z<1. While systematic errors greatly degrade the theoretical
sensitivity, this probe may still offer useful parameter estimation, especially
in complementarity with a distance measure like the Type Ia supernova method
implemented by SNAP. Possible future observations of the Alcock-Paczynski
distortion by the KAOS project on a 8 meter ground based telescope are
considered.Comment: 6 pages, 8 figure
Robust Neutrino Constraints by Combining Low Redshift Observations with the CMB
We illustrate how recently improved low-redshift cosmological measurements
can tighten constraints on neutrino properties. In particular we examine the
impact of the assumed cosmological model on the constraints. We first consider
the new HST H0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the
sigma8*(Omegam/0.25)^0.41 = 0.832 +/- 0.033 constraint from Rozo et al. (2009)
derived from the SDSS maxBCG Cluster Catalog. In a Lambda CDM model and when
combined with WMAP5 constraints, these low-redshift measurements constrain sum
mnu<0.4 eV at the 95% confidence level. This bound does not relax when allowing
for the running of the spectral index or for primordial tensor perturbations.
When adding also Supernovae and BAO constraints, we obtain a 95% upper limit of
sum mnu<0.3 eV. We test the sensitivity of the neutrino mass constraint to the
assumed expansion history by both allowing a dark energy equation of state
parameter w to vary, and by studying a model with coupling between dark energy
and dark matter, which allows for variation in w, Omegak, and dark coupling
strength xi. When combining CMB, H0, and the SDSS LRG halo power spectrum from
Reid et al. 2009, we find that in this very general model, sum mnu < 0.51 eV
with 95% confidence. If we allow the number of relativistic species Nrel to
vary in a Lambda CDM model with sum mnu = 0, we find Nrel =
3.76^{+0.63}_{-0.68} (^{+1.38}_{-1.21}) for the 68% and 95% confidence
intervals. We also report prior-independent constraints, which are in excellent
agreement with the Bayesian constraints.Comment: 19 pages, 6 figures, submitted to JCAP; v2: accepted version. Added
section on profile likelihood for Nrel, improved plot
Cosmological scaling solutions in generalised Gauss-Bonnet gravity theories
The conditions for the existence and stability of cosmological power-law
scaling solutions are established when the Einstein-Hilbert action is modified
by the inclusion of a function of the Gauss-Bonnet curvature invariant. The
general form of the action that leads to such solutions is determined for the
case where the universe is sourced by a barotropic perfect fluid. It is shown
by employing an equivalence between the Gauss-Bonnet action and a scalar-tensor
theory of gravity that the cosmological field equations can be written as a
plane autonomous system. It is found that stable scaling solutions exist when
the parameters of the model take appropriate values.Comment: 10 pages and 5 figure
The dark side of curvature
Geometrical tests such as the combination of the Hubble parameter H(z) and
the angular diameter distance d_A(z) can, in principle, break the degeneracy
between the dark energy equation of state parameter w(z), and the spatial
curvature Omega_k in a direct, model-independent way. In practice, constraints
on these quantities achievable from realistic experiments, such as those to be
provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination
with CMB data, can resolve the cosmic confusion between the dark energy
equation of state parameter and curvature only statistically and within a
parameterized model for w(z). Combining measurements of both H(z) and d_A(z) up
to sufficiently high redshifts around z = 2 and employing a parameterization of
the redshift evolution of the dark energy equation of state are the keys to
resolve the w(z)-Omega_k degeneracy.Comment: 18 pages, 9 figures. Minor changes, matches version accepted in JCA
Large-scale periodicity in the distribution of QSO absorption-line systems
The spatial-temporal distribution of absorption-line systems (ALSs) observed
in QSO spectra within the cosmological redshift interval z = 0.0--4.3 is
investigated on the base of our updated catalog of absorption systems. We
consider so called metallic systems including basically lines of heavy
elements. The sample of the data displays regular variations (with amplitudes ~
15 -- 20%) in the z-distribution of ALSs as well as in the eta-distribution,
where eta is a dimensionless line-of-sight comoving distance, relatively to
smoother dependences. The eta-distribution reveals the periodicity with period
Delta eta = 0.036 +/- 0.002, which corresponds to a spatial characteristic
scale (108 +/- 6) h(-1) Mpc or (alternatively) a temporal interval (350 +/- 20)
h(-1) Myr for the LambdaCDM cosmological model. We discuss a possibility of a
spatial interpretation of the results treating the pattern obtained as a trace
of an order imprinted on the galaxy clustering in the early Universe.Comment: AASTeX, 13 pages, with 9 figures, Accepted for publication in
Astrophysics & Space Scienc
Photo-z optimization for measurements of the BAO radial direction
Baryon Acoustic Oscillations (BAO) in the radial direction offer a method to
directly measure the Universe expansion history, and to set limits to space
curvature when combined to the angular BAO signal. In addition to spectroscopic
surveys, radial BAO might be measured from accurate enough photometric
redshifts obtained with narrow-band filters. We explore the requirements for a
photometric survey using Luminous Red Galaxies (LRG) to competitively measure
the radial BAO signal and discuss the possible systematic errors of this
approach. If LRG were a highly homogeneous population, we show that the photo-z
accuracy would not substantially improve by increasing the number of filters
beyond , except for a small fraction of the sources detected at high
signal-to-noise, and broad-band filters would suffice to achieve the target
for measuring radial BAO. Using the LRG spectra
obtained from SDSS, we find that the spectral variability of LRG substantially
worsens the achievable photometric redshift errors, and that the optimal system
consists of 30 filters of width . A
is generally necessary at the filters on the red side of the
break to reach the target photometric accuracy. We estimate that a
5-year survey in a dedicated telescope with etendue in excess of 60 would be necessary to obtain a high enough density of galaxies to
measure radial BAO with sufficiently low shot noise up to . We
conclude that spectroscopic surveys have a superior performance than
photometric ones for measuring BAO in the radial direction.Comment: Replaced with minor editorial comments and one extra figure. Results
unchange
A simple derivation of level spacing of quasinormal frequencies for a black hole with a deficit solid angle and quintessence-like matter
In this paper, we investigate analytically the level space of the imaginary
part of quasinormal frequencies for a black hole with a deficit solid angle and
quintessence-like matter by the Padmanabhan's method \cite{Padmanabhan}.
Padmanabhan presented a method to study analytically the imaginary part of
quasinormal frequencies for a class of spherically symmetric spacetimes
including Schwarzschild-de Sitter black holes which has an evenly spaced
structure. The results show that the level space of scalar and gravitational
quasinormal frequencies for this kind of black holes only depend on the surface
gravity of black-hole horizon in the range of -1 < w < -1/3, respectively . We
also extend the range of to , the results of which are similar
to that in -1 < w < -1/3 case. Particularly, a black hole with a deficit solid
angle in accelerating universe will be a Schwarzschild-de Sitter black hole,
fixing and . And a black hole with a deficit solid
angle in the accelerating universe will be a Schwarzschild black hole,when
and . In this paper, is the parameter of state
equation, is a parameter relating to a deficit solid angle and
is the density of static spherically symmetrical quintessence-like
matter at .Comment: 6 pages, Accepted for publication in Astrophysics & Space Scienc
Rapidly-Varying Speed of Sound, Scale Invariance and Non-Gaussian Signatures
We show that curvature perturbations acquire a scale invariant spectrum for
any constant equation of state, provided the fluid has a suitably
time-dependent sound speed. In order for modes to exit the physical horizon,
and in order to solve the usual problems of standard big bang cosmology, we
argue that the only allowed possibilities are inflationary (albeit not
necessarily slow-roll) expansion or ekpyrotic contraction. Non-Gaussianities
offer many distinguish features. As usual with a small sound speed,
non-Gaussianity can be relatively large, around current sensitivity levels. For
DBI-like lagrangians, the amplitude is negative in the inflationary branch, and
can be either negative or positive in the ekpyrotic branch. Unlike the power
spectrum, the three-point amplitude displays a large tilt that, in the
expanding case, peaks on smallest scales. While the shape is predominantly of
the equilateral type in the inflationary branch, as in DBI inflation, it is of
the local form in the ekpyrotic branch. The tensor spectrum is also generically
far from scale invariant. In the contracting case, for instance, tensors are
strongly blue tilted, resulting in an unmeasurably small gravity wave amplitude
on cosmic microwave background scales.Comment: 41 pages, 12 figures. v4: Few typos in equations (7.39) correcte
- …