1 research outputs found
Nonlinear Spin Dynamics in Nuclear Magnets
A method is developed for solving nonlinear systems of differential, or
integrodifferential, equations with stochastic fields. The method makes it
possible to give an accurate solution for an interesting physical problem: What
are the peculiarities of nonlinear spin dynamics in nonequilibrium nuclear
magnets coupled with a resonator? Evolution equations for nuclear spins are
derived basing on a Hamiltonian with dipole interactions. The ensemble of spins
is coupled with a resonator electric circuit. Seven types of main relaxation
regimes are found: free induction, collective induction, free relaxation,
collective relaxation, weak superradiance, pure superradiance, and triggered
superradiance. The initial motion of spins can be originated by two reasons,
either by an imposed initial coherence or by local spin fluctuations due to
nonsecular dipole interactions. The relaxation regimes caused by the second
reason cannot be described by the Bloch equations. Numerical estimates show
good agreement with experiment.Comment: 1 file, 47 pages, LaTe