267 research outputs found

    Acceleration Radiation for Orbiting Electrons

    Get PDF
    This paper presents an analysis of the radiation seen by an observer in circular acceleration, for a magnetic spin. This is applied to an electron in a storage ring, and the subtilty of the interaction of the spin with the spatial motion of the electron is explicated. This interaction is shown to be time dependent (in the radiating frame), which explains the strange results found for the electron's residual polarisation in the literature. Finally, some brief comments about the radiation emitted by an accelerating detector are made where it is shown that the spectrum is correlated in that particles are emitted in pairs.Comment: 21pp 7fi

    Classical aspects of Hawking radiation verified in analogue gravity experiment

    Full text link
    There is an analogy between the propagation of fields on a curved spacetime and shallow water waves in an open channel flow. By placing a streamlined obstacle into an open channel flow we create a region of high velocity over the obstacle that can include wave horizons. Long (shallow water) waves propagating upstream towards this region are blocked and converted into short (deep water) waves. This is the analogue of the stimulated Hawking emission by a white hole (the time inverse of a black hole). The measurements of amplitudes of the converted waves demonstrate that they appear in pairs and are classically correlated; the spectra of the conversion process is described by a Boltzmann-distribution; and the Boltzmann-distribution is determined by the determined by the change in flow across the white hole horizon.Comment: 17 pages, 10 figures; draft of a chapter submitted to the proceedings of the IX'th SIGRAV graduate school: Analogue Gravity, Lake Como, Italy, May 201

    Quantum radiation by electrons in lasers and the Unruh effect

    Full text link
    In addition to the Larmor radiation known from classical electrodynamics, electrons in a laser field may emit pairs of entangled photons -- which is a pure quantum effect. We investigate this quantum effect and discuss why it is suppressed in comparison with the classical Larmor radiation (which is just Thomson backscattering of the laser photons). Further, we provide an intuitive explanation of this process (in a simplified setting) in terms of the Unruh effect.Comment: 4 pages, 3 figure

    Coordinates with Non-Singular Curvature for a Time Dependent Black Hole Horizon

    Get PDF
    A naive introduction of a dependency of the mass of a black hole on the Schwarzschild time coordinate results in singular behavior of curvature invariants at the horizon, violating expectations from complementarity. If instead a temporal dependence is introduced in terms of a coordinate akin to the river time representation, the Ricci scalar is nowhere singular away from the origin. It is found that for a shrinking mass scale due to evaporation, the null radial geodesics that generate the horizon are slightly displaced from the coordinate singularity. In addition, a changing horizon scale significantly alters the form of the coordinate singularity in diagonal (orthogonal) metric coordinates representing the space-time. A Penrose diagram describing the growth and evaporation of an example black hole is constructed to examine the evolution of the coordinate singularity.Comment: 15 pages, 1 figure, additional citation

    Black Hole Thermodynamics and Lorentz Symmetry

    Full text link
    Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.Comment: 4 pages; v2: Version to appear in Foundations of Physics. Potential counterexamples addressed, argument given applying to LV theories where all speeds (or horizons) coincide, and editing for clarit

    Hawking Spectrum and High Frequency Dispersion

    Get PDF
    We study the spectrum of created particles in two-dimensional black hole geometries for a linear, hermitian scalar field satisfying a Lorentz non-invariant field equation with higher spatial derivative terms that are suppressed by powers of a fundamental momentum scale k0k_0. The preferred frame is the ``free-fall frame" of the black hole. This model is a variation of Unruh's sonic black hole analogy. We find that there are two qualitatively different types of particle production in this model: a thermal Hawking flux generated by ``mode conversion" at the black hole horizon, and a non-thermal spectrum generated via scattering off the background into negative free-fall frequency modes. This second process has nothing to do with black holes and does not occur for the ordinary wave equation because such modes do not propagate outside the horizon with positive Killing frequency. The horizon component of the radiation is astonishingly close to a perfect thermal spectrum: for the smoothest metric studied, with Hawking temperature TH0.0008k0T_H\simeq0.0008k_0, agreement is of order (TH/k0)3(T_H/k_0)^3 at frequency ω=TH\omega=T_H, and agreement to order TH/k0T_H/k_0 persists out to ω/TH45\omega/T_H\simeq 45 where the thermal number flux is O(1020O(10^{-20}). The flux from scattering dominates at large ω\omega and becomes many orders of magnitude larger than the horizon component for metrics with a ``kink", i.e. a region of high curvature localized on a static worldline outside the horizon. This non-thermal flux amounts to roughly 10\% of the total luminosity for the kinkier metrics considered. The flux exhibits oscillations as a function of frequency which can be explained by interference between the various contributions to the flux.Comment: 32 pages, plain latex, 16 figures included using psfi

    Black Hole Evaporation in the Presence of a Short Distance Cutoff

    Full text link
    A derivation of the Hawking effect is given which avoids reference to field modes above some cutoff frequency ωcM1\omega_c\gg M^{-1} in the free-fall frame of the black hole. To avoid reference to arbitrarily high frequencies, it is necessary to impose a boundary condition on the quantum field in a timelike region near the horizon, rather than on a (spacelike) Cauchy surface either outside the horizon or at early times before the horizon forms. Due to the nature of the horizon as an infinite redshift surface, the correct boundary condition at late times outside the horizon cannot be deduced, within the confines of a theory that applies only below the cutoff, from initial conditions prior to the formation of the hole. A boundary condition is formulated which leads to the Hawking effect in a cutoff theory. It is argued that it is possible the boundary condition is {\it not} satisfied, so that the spectrum of black hole radiation may be significantly different from that predicted by Hawking, even without the back-reaction near the horizon becoming of order unity relative to the curvature.Comment: 35 pages, plain LaTeX, UMDGR93-32, NSF-ITP-93-2

    Pseudo-Schwarzschild Spherical Accretion as a Classical Black Hole Analogue

    Full text link
    We demonstrate that a spherical accretion onto astrophysical black holes, under the influence of Newtonian or various post-Newtonian pseudo-Schwarzschild gravitational potentials, may constitute a concrete example of classical analogue gravity naturally found in the Universe. We analytically calculate the corresponding analogue Hawking temperature as a function of the minimum number of physical parameters governing the accretion flow. We study both the polytropic and the isothermal accretion. We show that unlike in a general relativistic spherical accretion, analogue white hole solutions can never be obtained in such post-Newtonian systems. We also show that an isothermal spherical accretion is a remarkably simple example in which the only one information--the temperature of the fluid, is sufficient to completely describe an analogue gravity system. For both types of accretion, the analogue Hawking temperature may become higher than the usual Hawking temperature. However, the analogue Hawking temperature for accreting astrophysical black holes is considerably lower compared with the temperature of the accreting fluid.Comment: Final Version to appear in the journal General Relativity & Gravitation, Volume 27, Issue 11, 2005. 17 pages, Two colour and one black and white figures. Typos corrected. Recent reference on analogue effect in relativistic accretion disc adde

    Extensive Entropy Bounds

    Get PDF
    It is shown that, for systems in which the entropy is an extensive function of the energy and volume, the Bekenstein and the holographic entropy bounds predict new results. More explicitly, the Bekenstein entropy bound leads to the entropy of thermal radiation (the Unruh-Wald bound) and the spherical entropy bound implies the "causal entropy bound". Surprisingly, the first bound shows a close relationship between black hole physics and the Stephan-Boltzmann law (for the energy and entropy flux densities of the radiation emitted by a hot blackbody). Furthermore, we find that the number of different species of massless fields is bounded by 104\sim 10^{4}.Comment: 8 pages, revtex, To appear in Phys. Rev.

    Analog model for an expanding universe

    Full text link
    Over the last few years numerous papers concerning analog models for gravity have been published. It was shown that the dynamical equation of several systems (e.g. Bose-Einstein condensates with a sink or a vortex) have the same wave equation as light in a curved-space (e.g. black holes). In the last few months several papers were released which deal with simulations of the universe. In this article the de-Sitter universe will be compared with a freely expanding three-dimensional spherical Bose-Einstein condensate. Initially the condensate is in a harmonic trap, which suddenly will be switched off. At the same time a small perturbation will be injected in the center of the condensate cloud. The motion of the perturbation in the expanding condensate will be discussed, and after some transformations the similarity to an expanding universe will be shown.Comment: Presented at the 4th Australasian conference on General Relativity and Cosmology, Monash U, Melbourne, 7-9 January 200
    corecore