48 research outputs found
Rapid disappearance of perennial ice on Canada's most northern lake
Field records, aerial photographs, and satellite imagery show that the perennial ice cover on Ward Hunt Lake at Canada's northern coast experienced rapid contraction and thinning after at least 50 years of relative stability. On all dates of sampling from 1953 to 2007, 3.5 to 4.3 m of perennial ice covered 65-85% of the lake surface in summer. The ice cover thinned from 2008 onward, and the lake became ice free in 2011, an event followed by 26 days of open water conditions in 2012. This rapid ice loss corresponded to a significant increase in melting degree days (MDD), from a mean (±SD) of 80.4 (±36.5) MDD (1996-2007) to 136.2 (±16.4) MDD (2008-2012). The shallow bathymetry combined with heat advection by warm inflows caused feedback effects that accelerated the ice decay. These observations show how changes across a critical threshold can result in the rapid disappearance of thick perennial ice
Dynamic response of an Arctic epishelf lake to seasonal and long-term forcing: Implications for ice shelf thickness
Changes in the depth of the freshwater-seawater interface in epishelf lakes have been used to infer long-term changes in the minimum thickness of ice shelves; however, little is known about the dynamics of epishelf lakes and what other factors may influence their depth. Continuous observations collected between 2011 and 2014 in the Milne Fiord epishelf lake, in the Canadian Arctic, showed that the depth of the halocline varied seasonally by up to 3.3m, which was comparable to interannual variability. The seasonal depth variation was controlled by the magnitude of surface meltwater inflow and the hydraulics of the inferred outflow pathway, a narrow basal channel in the Milne Ice She
Response of a Lake Michigan coastal lake to anthropogenic catchment disturbance
A paleolimnological investigation of post-European sediments in a Lake Michigan coastal lake was used to examine the response of Lower Herring Lake to anthropogenic impacts and its role as a processor of watershed inputs. We also compare the timing of this response with that of Lake Michigan to examine the role of marginal lakes as ‘early warning’ indicators of potential changes in the larger connected system and their role in buffering Lake Michigan against anthropogenic changes through biotic interactions and material trapping. Sediment geochemistry, siliceous microfossils and nutrient-related morphological changes in diatoms, identified three major trophic periods in the recent history of the lake. During deforestation and early settlement (pre-1845–1920), lake response to catchment disturbances results in localized increases in diatom abundances with minor changes in existing communities. In this early phase of disturbance, Lower Herring Lake acts as a sediment sink and a biological processor of nutrient inputs. During low-lake levels of the 1930s, the lake goes through a transitional period characterized by increased primary productivity and a major shift in diatom communities. Post-World War II (late 1940s–1989) anthropogenic disturbances push Lower Herring Lake to a new state and a permanent change in diatom community structure dominated by Cyclotella comensis . The dominance of planktonic summer diatom species associated with the deep chlorophyll maximum (DCM) is attributed to epilimnetic nutrient depletion. Declining Si:P ratios are inferred from increased sediment storage of biogenic silica and morphological changes in the silica content of Aulacoseira ambigua and Stephanodiscus niagarae . Beginning in the late 1940s, Lower Herring Lake functions as a biogeochemical processor of catchment inputs and a carbon, nutrient and silica sink. Microfossil response to increased nutrients and increased storage of biogenic silica in Lower Herring Lake and other regional embayments occur approximately 20–25 years earlier than in a nearby Lake Michigan site. Results from this study provide evidence for the role of marginal lakes and bays as nutrient buffering systems, delaying the impact of anthropogenic activities on the larger Lake Michigan system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43091/1/10933_2004_Article_1688.pd
Microbial habitat dynamics and ablation control on the Ward Hunt Ice Shelf
The Ward Hunt Ice Shelf (83°02′N, 74°00′W) is an ∼40 m thick ice feature that occupies a large embayment along Canada's northernmost coast. Sediments cover 10% of its surface and provide a habitat for diverse microbial communities. These assemblages form an organo-sedimentary matrix (microbial mat) composed of cold-tolerant cyanobacteria and several other types of organisms. We investigated the environmental properties (temperature, irradiance, conductivity and nutrient concentration) of the microbial mat habitat and the effect of the microbial mats on the surface topography of the ice shelf. The low albedo of microbial mats relative to the surrounding snow and ice encouraged meltwater production, thereby extending the growth season to 61 days despite only 52 days with mean temperatures above O°C. We found large excursions in salinity near the microbial mat during freeze-up and melt, and 54% of all ponds sampled had conductivity profiles indicating stratification. Nutrient concentrations within the microbial mats were up to two orders of magnitude higher than those found in the water column, which underscores the differences between the microbial mat microenvironment and the overall bulk properties of the cryo-ecosystem. The average ice surface ablation in the microbial mat-rich study site was 1·22 m year-1, two times higher than values measured in areas of the ice shelf where mats were less prevalent. We demonstrate with topographic surveys that the microbial mats promote differential ablation and conclude that the cohesive microbial aggregates trap and stabilize sediment, reduce albedo, and thereby influence the surface morphology of the ice shelf. Copyrigh
The efficient allocation of local public factors in Tiebout's tradition
SIGLEAvailable from British Library Document Supply Centre- DSC:9261.96(378) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Ecosystems on ice: The microbial ecology of Markham Ice Shelf in the high Arctic
Microbial communities occur throughout the cryosphere in a diverse range of ice-dominated habitats including snow, sea ice, glaciers, permafrost, and ice clouds. In each of these environments, organisms must be capable of surviving freeze-thaw cycles, persistent low temperatures for growth, extremes of solar radiation, and prolonged dormancy. These constraints may have been especially important during global cooling events in the past, including the Precambrian glaciations. One analogue of these early Earth conditions is the thick, landfast sea ice that occurs today at certain locations in the Arctic and Antarctic. These ice shelves contain liquid water for a brief period each summer, and support luxuriant microbial mat communities. Our recent studies of these mats on the Markham Ice Shelf (Canadian high Arctic) by high performance liquid chromatography (HPLC) showed that they contain high concentrations of chlorophylls a and b, and several carotenoids notably lutein, echinenone and β-carotene. The largest peaks in the HPLC chromatograms were two UV-screening compounds known to be produced by cyanobacteria, scytonemin, and its decomposition product scytonemin-red. Microscopic analyses of the mats showed that they were dominated by the chlorophyte genera cf. Chlorosarcinopsis, Pleurastrum, Palmellopsis, and Bracteococcus, and cyanobacteria of the genera Nostoc, Phormidium, Leptolyngbya, and Gloeocapsa. From point transects and localized sampling we estimated a total standing stock on this ice shelf of up to 11,200 tonnes of organic matter. These observations underscore the ability of microbial communities to flourish despite the severe constraints imposed by the cryo-ecosystem environment
Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake
Field observations and RADARSAT imagery of the Ward Hunt Ice Shelf (lat. 83°N, long. 74°W), Nunavut, Canada, show that it broke in two over the period 2000 to 2002, with additional fissuring and further ice island calving. The fracturing caused the drainage of an ice-dammed epishelf lake (Disraeli Fiord), a rare ecosystem type. Reductions in the freshwater volume of Disraeli Fiord occurred from 1967 to the present and accompanied a significant rise in mean annual air temperature over the same period in this far northern region. The recent collapse of ice shelves in West Antarctica has been interpreted as evidence of accelerated climate change in that region. Similarly, the inferred thinning and observed fragmentation of the ice shelf, plus the drainage of the epishelf lake, are additional evidence for climate change in the High Arctic
Simulated heat storage in a perennially ice-covered high Arctic lake: Sensitivity to climate change
Perennially ice-covered, meromictic lakes occur along the northern coast of Ellesmere Island in the Canadian high Arctic and have distinctive conductivity and temperature profiles. They are salinity stratified and have deep thermal maxima that persist throughout the year at temperatures up to 60°C above the winter minimum in the overlying atmosphere. Heat transfer in one of these lakes (Lake A, latitude 83.0°N, longitude 75.4°W) was simulated using a high spatial resolution model based on a one-dimensional heat diffusion and radiative transfer equation, which was solved through numerical integration. Boundary conditions were forced using climate data from an automated weather station installed next to the lake. There was a good fit between simulated and observed water column temperatures, including the midwater temperature maximum of 8.5°C, after 63 years of heating (RMSE = 0.10°C). This suggests that Lake A became ice-free in the 1940s, a known period of intense warming of the circumpolar Arctic. The model was sensitive to forcing by photosynthetically active radiation (PAR, 400-700 nm), in addition to optically related parameters such as surface reflectance, snow and ice cover, and the PAR diffuse attenuation coefficient. The unusual thermal structure is affected by stratified layers of pigmented microbial communities, which enhance the absorption of solar radiation. Simulation of ice-free summers revealed that the lake's thermal profile would lose its characteristic shape over several decades and that ongoing climate change could reduce the thermal maximum from 8.5° to 4°C within 50 years. Copyright 2008 by the American Geophysical Union