50 research outputs found

    Dual embedding of the Lorentz-violating electrodinamics and Batalin-Vilkovisky quantization

    Full text link
    Modifications of the electromagnetic Maxwell Lagrangian in four dimensions have been considered by some authors. One may include an explicit massive term (Proca) and a topological but not Lorentz-invariant term within certain observational limits. We find the dual-corresponding gauge invariant version of this theory by using the recently suggested gauge embedding method. We enforce this dualisation procedure by showing that, in many cases, this is actually a constructive method to find a sort of parent action, which manifestly establishes duality. We also use the gauge invariant version of this theory to formulate a Batalin-Vilkovisky quantization and present a detailed discussion on the excitation spectrum.Comment: 8 page

    +21dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser

    No full text
    Efficient energy transfer has been demonstrated in an Er/Yb co-doped phosphorus doped silica fiber for the first time. This has indirectly allowed the use of reliable, high-power AlGaAs diode laser arrays as the semiconductor pump source through the use of a diode-pumped Nd:YAG (DPL) laser operating at 1064 nm. Small signal gains of 42 dB and output powers of 71 mW (+18.5 dBm) have been observed with a single DPL. Bidirectional pumping with two DPLs has yielded an output power of 130 mW (+21 dBm)

    Experimental progress in positronium laser physics

    Get PDF

    +20dBm erbium power amplifier pumped by a diode-pumped Nd:YAG laser

    No full text
    Efficient energy transfer has been demonstrated in an Er/Yb co-doped phosphorus doped silica fiber for the first time. This has indirectly allowed the use of reliabIe, high power AlGaAs diode laser arrays as the semiconductor pump source through the use of a diode-pumped Nd:YAG (DPL) laser operating at 1064 nm. Small signal gains of 40 dB and output powers of 69 mW (+18.4 dBm) have been observed with a single DPL Bi-directional pumping with two DPL's has yielded an output power of 145 mW (+21.5dBm)

    Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    No full text
    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed
    corecore