56 research outputs found
Comparison of three wet-alkaline methods of digestion of biogenic silica in water
Methods for determination of low levels of biogenic silica (0.2–0.4 mg SiO 2 ) in aqueous samples after digestion with three wetalkaline extraction procedures compared favourably in both precision of replicates and recovery of silica utilized by diatoms in budgeted cultures. Leaching samples with 0.2 M NaOH for 10–15 min at 100°C was the least time consuming procedure. Also interference from silicate minerals was lower for this method than leaching with either 0.5 or 5% Na 2 CO 3 for 2 h at 85°C. The use of filters to concentrate samples enables detection of low levels of biogenic silica with colorimetric procedures. Polycarbonate filters are recommended in preference to cellulose acetate or polyvinyl chloride filters for sample collection. Time-course experiments are recommended for establishing digestion times and determining the presence of mineral silicate interference. Wet-alkaline digestion methods are recommended for routine analysis of biogenic silica in suspended matter in preference to infra-red analysis, alkaline fusion and hydrofluoric acid/nitric acid methods.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74725/1/j.1365-2427.1983.tb00658.x.pd
Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum , and Thalassiosira gravida
Three marine diatoms, Skeletonema costatum, Chaetoceros debilis , and Thalassiosira gravida were grown under no limitation and ammonium or silicate limitation or starvation. Changes in cell morphology were documented with photomicrographs of ammonium and silicate-limited and non-limited cells, and correlated with observed changes in chemical composition. Cultures grown under silicate starvation or limitation showed an increase in particulate carbon, nitrogen and phosporus and chlorophyll a per unit cell volume compared to non-limited cells; particulate silica per cell volume decreased. Si-starved cells were different from Si-limited cells in that the former contained more particulate carbon and silica per cell volume. The most sensitive indicator of silicate limitation or starvation was the ratio C:Si, being 3 to 5 times higher than the values for non-limited cells. The ratios Si:chlorophyll a and S:P were lower and N:Si was higher than non-limited cells by a factor of 2 to 3. The other ratios, C:N, C:P, C:chlorophyll a , N:chlorophyll a , P:chlorophyll a and N:P were considered not to be sensitive indicators of silicate limitation or starvation. Chlorophyll a , and particulate nitrogen per unit cell volume decreased under ammonium limitation and starvation. NH 4 -starved cells contained more chlorophyll a , carbon, nitrogen, silica, and phosphorus per cell volume than NH 4 -limited cells. N:Si was the most sensitive ratio to ammonium limitation or starvation, being 2 to 3 times lower than non-limited cells. Si:chlorophyll a , P:chlorophyll a and N:P were less sensitive, while the ratios C:N, C:chlorophyll a , N:chlorophyll a , C:Si, C:P and Si:P were the least sensitive. Limited cells had less of the limiting nutrient per unit cell volume than starved cells and more of the non-limiting nutrients (i.e., silica and phosphorus for NH 4 -limited cells). This suggests that nutrient-limited cells rather than nutrient-starved cells should be used along with non-limited cells to measure the full range of potential change in cellular chemical composition for one species under nutrient limitation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46631/1/227_2004_Article_BF00392568.pd
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
Functional and quality of life outcomes of localised prostate cancer treatments (prostate testing for cancer and treatment [ProtecT] study)
Objective
To investigate the functional and quality of life (QoL) outcomes of treatments for localised prostate cancer and inform treatment decision-making.
Patients and Methods
Men aged 50–69 years diagnosed with localised prostate cancer by prostate-specific antigen testing and biopsies at nine UK centres in the Prostate Testing for Cancer and Treatment (ProtecT) trial were randomised to, or chose one of, three treatments. Of 2565 participants, 1135 men received active monitoring (AM), 750 a radical prostatectomy (RP), 603 external-beam radiotherapy (EBRT) with concurrent androgen-deprivation therapy (ADT) and 77 low-dose-rate brachytherapy (BT, not a randomised treatment). Patient-reported outcome measures (PROMs) completed annually for 6 years were analysed by initial treatment and censored for subsequent treatments. Mixed effects models were adjusted for baseline characteristics using propensity scores.
Results
Treatment-received analyses revealed different impacts of treatments over 6 years. Men remaining on AM experienced gradual declines in sexual and urinary function with age (e.g., increases in erectile dysfunction from 35% of men at baseline to 53% at 6 years and nocturia similarly from 20% to 38%). Radical treatment impacts were immediate and continued over 6 years. After RP, 95% of men reported erectile dysfunction persisting for 85% at 6 years, and after EBRT this was reported by 69% and 74%, respectively (P < 0.001 compared with AM). After RP, 36% of men reported urinary leakage requiring at least 1 pad/day, persisting for 20% at 6 years, compared with no change in men receiving EBRT or AM (P < 0.001). Worse bowel function and bother (e.g., bloody stools 6% at 6 years and faecal incontinence 10%) was experienced by men after EBRT than after RP or AM (P < 0.001) with lesser effects after BT. No treatment affected mental or physical QoL.
Conclusion
Treatment decision-making for localised prostate cancer can be informed by these 6-year functional and QoL outcomes
- …