4 research outputs found
Recurrence and Polya number of general one-dimensional random walks
The recurrence properties of random walks can be characterized by P\'{o}lya
number, i.e., the probability that the walker has returned to the origin at
least once. In this paper, we consider recurrence properties for a general 1D
random walk on a line, in which at each time step the walker can move to the
left or right with probabilities and , or remain at the same position
with probability (). We calculate P\'{o}lya number of this
model and find a simple expression for as, , where is
the absolute difference of and (). We prove this rigorous
expression by the method of creative telescoping, and our result suggests that
the walk is recurrent if and only if the left-moving probability equals to
the right-moving probability .Comment: 3 page short pape
Closed-Form transformation between geodetic and ellipsoidal coordinates
We present formulas for direct closed-form transformation between geodetic coordinates(Φ, λ, h) and ellipsoidal coordinates (β, λ, u) for any oblate ellipsoid of revolution.These will be useful for those dealing with ellipsoidal representations of the Earth's gravityfield or other oblate ellipsoidal figures. The numerical stability of the transformations for nearpolarand near-equatorial regions is also considered