768 research outputs found

    Notebook-as-a-VRE (NaaVRE): From private notebooks to a collaborative cloud virtual research environment

    Get PDF
    Virtual Research Environments (VREs) provide user-centric support in the lifecycle of research activities, e.g., discovering and accessing research assets, or composing and executing application workflows. A typical VRE is often implemented as an integrated environment, which includes a catalog of research assets, a workflow management system, a data management framework, and tools for enabling collaboration among users. Notebook environments, such as Jupyter, allow researchers to rapidly prototype scientific code and share their experiments as online accessible notebooks. Jupyter can support several popular languages that are used by data scientists, such as Python, R, and Julia. However, such notebook environments do not have seamless support for running heavy computations on remote infrastructure or finding and accessing software code inside notebooks. This paper investigates the gap between a notebook environment and a VRE and proposes an embedded VRE solution for the Jupyter environment called Notebook-as-a-VRE (NaaVRE). The NaaVRE solution provides functional components via a component marketplace and allows users to create a customized VRE on top of the Jupyter environment. From the VRE, a user can search research assets (data, software, and algorithms), compose workflows, manage the lifecycle of an experiment, and share the results among users in the community. We demonstrate how such a solution can enhance a legacy workflow that uses Light Detection and Ranging (LiDAR) data from country-wide airborne laser scanning surveys for deriving geospatial data products of ecosystem structure at high resolution over broad spatial extents. This enables users to scale out the processing of multi-terabyte LiDAR point clouds for ecological applications to more data sources in a distributed cloud environment.Comment: A revised version has been published in the journal software practice and experienc

    Nucleon-nucleon momentum correlation function for light nuclei

    Get PDF
    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics.Comment: Talk given at the 18th International IUPAP Conference on Few-Body Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To appear in Nucl. Phys.

    Effect of a Nonuniform Radial/Axial Tip Clearance on the Flow Field in a Mixed-Flow Pump

    No full text
    The effect of a nonuniform radial/axial tip clearance on the flow field in a mixed-flow pump was studied by numerical simulation of the unsteady flow in the pump with two tip clearance shapes using the standard Reynolds average Navier–Stokes turbulence model, and the equations were solved with the SIMPLEC computational algorithm. The external characteristics, distribution of static pressure, streamline flow of the tip clearance, and vorticity in the impeller are analyzed. The accuracy of numerical simulation was assessed by comparing experimental data with computational results. Although a nonuniform tip clearance leads to a decline in the pump head, which is more pronounced under part-load conditions, the configuration with a nonuniform tip clearance (c = 0.5–1 mm) provides the more uniform velocity and pressure distribution both in the circumferential and axial directions, as the leakage vortex intensity is weakened and its shedding is suppressed. The research results pointed the way for improving the unsteady flow in the mixed-flow pump.Изучено влияние неравномерного зазора на поле течения в радиально-осевом насосе с помощью численного моделирования нестационарного течения в насосе с зазором двух конфигураций на основе стандартной модели турбулентности RNG k , выполнено решение уравнений с применением алгоритма SIMPLE. Проанализированы внешние характеристики, распределение статического давления, потока в зазоре и турбулентности в импеллере. Проведена оценка достоверности численного моделирования путем сравнения экспериментальных данных с результатами расчетов. Показано, что неравномерный зазор вызывает уменьшение напора в насосе, что становится более выраженным в условиях частичного нагружения, но конфигурация с неравномерным зазором (с = 0,5 1,0 мм) обеспечивает более равномерные скорость и распределение давления в касательном и осевом направлениях, поскольку интенсивность обтекания с кольцевым вихрем уменьшается, а его сброс замедляется. Полученные результаты открывают путь к стабилизации нестационарного потока в радиально-осевом насосе

    Scaling of anisotropy flows in intermediate energy heavy ion collisions

    Get PDF
    Anisotropic flows (v1v_1, v2v_2 and v4v_4) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v1v_1) and elliptic flow (v2v_2) are demonstrated for light nuclear clusters. Moreover, the ratios of v4/v22v_4/v_2^2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the proceeding issue in Nuclear Physics

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Abundances of the elements in the solar system

    Full text link
    A review of the abundances and condensation temperatures of the elements and their nuclides in the solar nebula and in chondritic meteorites. Abundances of the elements in some neighboring stars are also discussed.Comment: 42 pages, 11 tables, 8 figures, chapter, In Landolt- B\"ornstein, New Series, Vol. VI/4B, Chap. 4.4, J.E. Tr\"umper (ed.), Berlin, Heidelberg, New York: Springer-Verlag, p. 560-63

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
    corecore