86 research outputs found
Determination of the number of J/ψ events with inclusive J/ψ decays
A measurement of the number of J/ψ events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψ. The number of J/ψ events taken in 2009 is recalculated to be (223.7 ± 1.4) × 106, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψ events taken in 2012 is determined to be (1086.9 ± 6.0) × 106. In total, the number of J/ψ events collected with the BESIII detector is measured to be (1310.6 ± 7.0) × 106, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible
Measurements of the center-of-mass energies at BESIII via the di-muon process
From 2011 to 2014, the BESIII experiment collected about 5 fb-1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e- → γISR/FSRμ+μ-, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking
Measurement of the absolute branching fraction for Λc+→Λμ+νμ
We report the first measurement of the absolute branching fraction for Λc+→Λμ+νμ. This measurement is based on a sample of e+e− annihilation data produced at a center-of-mass energy s=4.6 GeV, collected with the BESIII detector at the BEPCII storage rings. The sample corresponds to an integrated luminosity of 567 pb−1. The branching fraction is determined to be B(Λc+→Λμ+νμ)=(3.49±0.46(stat)±0.27(syst))%. In addition, we calculate the ratio B(Λc+→Λμ+νμ)/B(Λc+→Λe+νe) to be 0.96±0.16(stat)±0.04(syst)
Measurement of the phase between strong and electromagnetic amplitudes of J/ψ decays
Using 16 energy points of e+e− annihilation data collected in the vicinity of the J/ψ resonance with the BESIII detector and with a total integrated luminosity of around 100pb−1, we study the relative phase between the strong and electromagnetic amplitudes of J/ψ decays. The relative phase between J/ψ electromagnetic decay and the continuum process (e+e− annihilation without the J/ψ resonance) is confirmed to be zero by studying the cross section lineshape of μ+μ− production. The relative phase between J/ψ strong and electromagnetic decays is then measured to be (84.9±3.6)∘ or (−84.7±3.1)∘ for the 2(π+π−)π0 final state by investigating the interference pattern between the J/ψ decay and the continuum process. This is the first measurement of the relative phase between J/ψ strong and electromagnetic decays into a multihadron final state using the lineshape of the production cross section. We also study the production lineshape of the multihadron final state ηπ+π− with η→π+π−π0, which provides additional information about the phase between the J/ψ electromagnetic decay amplitude and the continuum process. Additionally, the branching fraction of J/ψ→2(π+π−)π0 is measured to be (4.73±0.44)% or (4.85±0.45)%, and the branching fraction of J/ψ→ηπ+π− is measured to be (3.78±0.68)×10−4. Both of them are consistent with the world average values. The quoted uncertainties include both statistical and systematic uncertainties, which are mainly caused by the low statistics. Keywords: Phase, Strong amplitude, Electromagnetic amplitude, J/ψ decay, BESII
- …