25 research outputs found
Structure formation in the Lemaitre-Tolman model
Structure formation within the Lemaitre-Tolman model is investigated in a
general manner. We seek models such that the initial density perturbation
within a homogeneous background has a smaller mass than the structure into
which it will develop, and the perturbation then accretes more mass during
evolution. This is a generalisation of the approach taken by Bonnor in 1956. It
is proved that any two spherically symmetric density profiles specified on any
two constant time slices can be joined by a Lemaitre-Tolman evolution, and
exact implicit formulae for the arbitrary functions that determine the
resulting L-T model are obtained. Examples of the process are investigated
numerically.Comment: LaTeX 2e plus 14 .eps & .ps figure files. 33 pages including figures.
Minor revisions of text and data make it more precise and consistent.
Currently scheduled for Phys Rev D vol 64, December 15 issu
You Can't Get Through Szekeres Wormholes - or - Regularity, Topology and Causality in Quasi-Spherical Szekeres Models
The spherically symmetric dust model of Lemaitre-Tolman can describe
wormholes, but the causal communication between the two asymptotic regions
through the neck is even less than in the vacuum
(Schwarzschild-Kruskal-Szekeres) case. We investigate the anisotropic
generalisation of the wormhole topology in the Szekeres model. The function
E(r, p, q) describes the deviation from spherical symmetry if \partial_r E \neq
0, but this requires the mass to be increasing with radius, \partial_r M > 0,
i.e. non-zero density. We investigate the geometrical relations between the
mass dipole and the locii of apparent horizon and of shell-crossings. We
present the various conditions that ensure physically reasonable
quasi-spherical models, including a regular origin, regular maxima and minima
in the spatial sections, and the absence of shell-crossings. We show that
physically reasonable values of \partial_r E \neq 0 cannot compensate for the
effects of \partial_r M > 0 in any direction, so that communication through the
neck is still worse than the vacuum.
We also show that a handle topology cannot be created by identifying
hypersufaces in the two asymptotic regions on either side of a wormhole, unless
a surface layer is allowed at the junction. This impossibility includes the
Schwarzschild-Kruskal-Szekeres case.Comment: zip file with LaTeX text + 6 figures (.eps & .ps). 47 pages. Second
replacement corrects some minor errors and typos. (First replacement prints
better on US letter size paper.
A rotating three component perfect fluid source and its junction with empty space-time
The Kerr solution for empty space-time is presented in an ellipsoidally
symmetric coordinate system and it is used to produce generalised ellipsoidal
metrics appropriate for the generation of rotating interior solutions of
Einstein's equations. It is shown that these solutions are the familiar static
perfect fluid cases commonly derived in curvature coordinates but now endowed
with rotation. The resulting solutions are also discussed in the context of
T-solutions of Einstein's equations and the vacuum T-solution outside a
rotating source is presented. The interior source for these solutions is shown
not to be a perfect fluid but rather an anisotropic three component perfect
fluid for which the energy momentum tensor is derived. The Schwarzschild
interior solution is given as an example of the approach.Comment: 14 page
Formation of a galaxy with a central black hole in the Lemaitre-Tolman model
We construct two models of the formation a galaxy with a central black hole,
starting from a small initial fluctuation at recombination. This is an
application of previously developed methods to find a Lemaitre-Tolman model
that evolves from a given initial density or velocity profile to a given final
density profile. We show that the black hole itself could be either a collapsed
object, or a non-vacuum generalisation of a full Schwarzschild-Kruskal-Szekeres
wormhole. Particular attention is paid to the black hole's apparent and event
horizons.Comment: REVTeX, 22 pages including 11 figures (25 figure files). Replacement
has minor changes in response to the referee, and editorial corrections. To
appear in PR
Energetics of the Einstein-Rosen spacetime
A study covering some aspects of the Einstein--Rosen metric is presented. The
electric and magnetic parts of the Weyl tensor are calculated. It is shown that
there are no purely magnetic E--R spacetimes, and also that a purely electric
E--R spacetime is necessarily static. The geodesics equations are found and
circular ones are analyzed in detail. The super--Poynting and the
``Lagrangian'' Poynting vectors are calculated and their expressions are found
for two specific examples. It is shown that for a pulse--type solution, both
expressions describe an inward radially directed flow of energy, far behind the
wave front. The physical significance of such an effect is discussed.Comment: 19 pages Latex.References added and updated.To appear in
Int.J.Theor.Phy
Relativistic anisotropic charged fluid spheres with varying cosmological constant
Static spherically symmetric anisotropic source has been studied for the
Einstein-Maxwell field equations assuming the erstwhile cosmological constant to be a space-variable scalar, viz., . Two
cases have been examined out of which one reduces to isotropic sphere. The
solutions thus obtained are shown to be electromagnetic in origin as a
particular case. It is also shown that the generally used pure charge
condition, viz., is not always required for constructing
electromagnetic mass models.Comment: 15 pages, 3 eps figure
Cosmological expansion and local systems: a Lema\^{i}tre-Tolman-Bondi model
We propose a Lema\^{i}tre-Tolman-Bondi system mimicking a two-body system to
address the problem of the cosmological expansion versus local dynamics. This
system is strongly bound but participates in the cosmic expansion and is
exactly comoving with the cosmic substratum
Gravitational collapse of a Hagedorn fluid in Vaidya geometry
The gravitational collapse of a high-density null charged matter fluid,
satisfying the Hagedorn equation of state, is considered in the framework of
the Vaidya geometry. The general solution of the gravitational field equations
can be obtained in an exact parametric form. The conditions for the formation
of a naked singularity, as a result of the collapse of the compact object, are
also investigated. For an appropriate choice of the arbitrary integration
functions the null radial outgoing geodesic, originating from the shell
focussing central singularity, admits one or more positive roots. Hence a
collapsing Hagedorn fluid could end either as a black hole, or as a naked
singularity. A possible astrophysical application of the model, to describe the
energy source of gamma-ray bursts, is also considered.Comment: 14 pages, 2 figures, to appear in Phys. Rev.
The Similarity Hypothesis in General Relativity
Self-similar models are important in general relativity and other fundamental
theories. In this paper we shall discuss the ``similarity hypothesis'', which
asserts that under a variety of physical circumstances solutions of these
theories will naturally evolve to a self-similar form. We will find there is
good evidence for this in the context of both spatially homogenous and
inhomogeneous cosmological models, although in some cases the self-similar
model is only an intermediate attractor. There are also a wide variety of
situations, including critical pheneomena, in which spherically symmetric
models tend towards self-similarity. However, this does not happen in all cases
and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra
Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics
A framework is introduced which explains the existence and similarities of
most exact solutions of the Einstein equations with a wide range of sources for
the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian
formulation. This class includes the spatially homogeneous cosmological models
and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves
methods for finding and exploiting hidden symmetries and invariant submanifolds
of the Hamiltonian formulation of the field equations. It unifies, simplifies
and extends most known work on hypersurface-homogeneous exact solutions. It is
shown that the same framework is also relevant to gravitational theories with a
similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for
publication in Phys. Rev.