12,621 research outputs found
Gate Tunable Dissipation and "Superconductor-Insulator" Transition in Carbon Nanotube Josephson Transistors
Dissipation is ubiquitous in quantum systems, and its interplay with
fluctuations is critical to maintaining quantum coherence. We experimentally
investigate the dissipation dynamics in single-walled carbon nanotubes coupled
to superconductors. The voltage-current characteristics display gate-tunable
hysteresis, with sizes that perfectly correlate with the normal state
resistance RN, indicating the junction undergoes a periodic modulation between
underdamped and overdamped regimes. Surprisingly, when a device's Fermi-level
is tuned through a local conductance minimum, we observe a gate-controlled
transition from superconducting-like to insulating-like states, with a
"critical" R_N value of about 8-20 kohm.Comment: Figures revised to improve clarity. Accepted for publication by
Physical Review Letter
Event-driven simulations of a plastic, spiking neural network
We consider a fully-connected network of leaky integrate-and-fire neurons
with spike-timing-dependent plasticity. The plasticity is controlled by a
parameter representing the expected weight of a synapse between neurons that
are firing randomly with the same mean frequency. For low values of the
plasticity parameter, the activities of the system are dominated by noise,
while large values of the plasticity parameter lead to self-sustaining activity
in the network. We perform event-driven simulations on finite-size networks
with up to 128 neurons to find the stationary synaptic weight conformations for
different values of the plasticity parameter. In both the low and high activity
regimes, the synaptic weights are narrowly distributed around the plasticity
parameter value consistent with the predictions of mean-field theory. However,
the distribution broadens in the transition region between the two regimes,
representing emergent network structures. Using a pseudophysical approach for
visualization, we show that the emergent structures are of "path" or "hub"
type, observed at different values of the plasticity parameter in the
transition region.Comment: 9 pages, 6 figure
Dynamical Creation of Fractionalized Vortices and Vortex Lattices
We investigate dynamic creation of fractionalized half-quantum vortices in
Bose-Einstein condensates of sodium atoms. Our simulations show that both
individual half-quantum vortices and vortex lattices can be created in rotating
optical traps when additional pulsed magnetic trapping potentials are applied.
We also find that a distinct periodically modulated spin-density-wave spatial
structure is always embedded in square half-quantum vortex lattices; this
structure can be conveniently probed by taking absorption images of
ballistically expanding cold atoms in a Stern-Gerlach field.Comment: 4 pages, 3 figures; published versio
Combining a non-immersive virtual reality gaming with motor-assisted elliptical exercise increases engagement and physiologic effort in children
A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Virtual reality (VR) gaming is promising in sustaining children’s participation during intensive physical rehabilitation. This study investigated how integration of a custom active serious gaming with a robot-motorized elliptical impacted children’s perception of engagement (Intrinsic Motivation Inventory), physiologic effort (i.e., exercise speed, heart rate, lower extremity muscle activation), and joint kinematics while overriding the motor’s assistance. Compared to Non-VR condition, during the VR-enhanced condition participants’ perceived engagement was 23% greater (p = 0.01), self-selected speed was 10% faster (p = 0.02), heart rate was 7% higher (p = 0.08) and muscle demands increased. Sagittal plane kinematics demonstrated only a small change at the knee. This study demonstrated that VR plays an essential role in promoting greater engagement and physiologic effort in children performing a cyclic locomotor rehabilitation task, without causing any adverse events or substantial disruption in lower extremity joint kinematics. The outcomes of this study provide a foundation for understanding the role of future VR-enhanced interventions and research studies that weigh/balance the need to physiologically challenge a child during training with the value of promoting task-related training to help promote recovery of walking
Molecular dynamics study of the fragmentation of silicon doped fullerenes
Tight binding molecular dynamics simulations, with a non orthogonal basis
set, are performed to study the fragmentation of carbon fullerenes doped with
up to six silicon atoms. Both substitutional and adsorbed cases are considered.
The fragmentation process is simulated starting from the equilibrium
configuration in each case and imposing a high initial temperature to the
atoms. Kinetic energy quickly converts into potential energy, so that the
system oscillates for some picoseconds and eventually breaks up. The most
probable first event for substituted fullerenes is the ejection of a C2
molecule, another very frequent event being that one Si atom goes to an
adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they
have four or more atoms, while the smaller ones tend to dissociate and
sometimes interchange positions with the C atoms. These results are compared
with experimental information from mass abundance spectroscopy and the products
of photofragmentation.Comment: Seven two-column pages, six postscript figures. To be published in
Physical Review
The Peak Brightness and Spatial Distribution of AGB Stars Near the Nucleus of M32
The bright stellar content near the center of the Local Group elliptical
galaxy M32 is investigated with 0.12 arcsec FWHM H and K images obtained with
the Gemini Mauna Kea telescope. Stars with K = 15.5, which are likely evolving
near the tip of the asymptotic giant branch (AGB), are resolved to within 2
arcsec of the nucleus, and it is concluded that the peak stellar brightness
near the center of M32 is similar to that in the outer regions of the galaxy.
Moreover, the projected density of bright AGB stars follows the visible light
profile to within 2 arcsec of the nucleus, indicating that the brightest stars
are well mixed throughout the galaxy. Thus, there is no evidence for an age
gradient, and the radial variations in spectroscopic indices and ultraviolet
colors that have been detected previously must be due to metallicity and/or
some other parameter. We suggest that either the bright AGB stars formed as
part of a highly uniform and coherent galaxy-wide episode of star formation, or
they originated in a separate system that merged with M32.Comment: 9 pages of text, 3 figures. ApJ (Letters) in pres
Tensor coupling effects on spin symmetry in anti-Lambda spectrum of hypernuclei
The effects of -tensor coupling on the spin
symmetry of spectra in -nucleus systems have
been studied with the relativistic mean-field theory. Taking
C+ as an example, it is found that the tensor coupling
enlarges the spin-orbit splittings of by an order of magnitude
although its effects on the wave functions of are negligible.
Similar conclusions has been observed in -nucleus of different
mass regions, including O+, Ca+ and
Pb+. It indicates that the spin symmetry in
anti-lambda-nucleus systems is still good irrespective of the tensor coupling.Comment: 12 pages, 3 figures
- …