249,779 research outputs found
Method and apparatus for positioning a robotic end effector
A robotic end effector and operation protocol for a reliable grasp of a target object irrespective of the target's contours is disclosed. A robotic hand includes a plurality of jointed fingers, one of which, like a thumb, is in opposed relation to the other. Each finger is comprised of at least two jointed sections, and provided with reflective proximity sensors, one on the inner surface of each finger section. Each proximity sensor comprises a transmitter of a beam of radiant energy and means for receiving reflections of the transmitted energy when reflected by a target object and for generating electrical signals responsive thereto. On the fingers opposed to the thumb, the proximity sensors on the outermost finger sections are aligned in an outer sensor array and the sensors on the intermediate finger sections and sensors on the innermost finger sections are similarly arranged to form an intermediate sensor array and an inner sensor array, respectively. The invention includes a computer system with software and/or circuitry for a protocol comprising the steps in sequence of: (1) approach axis alignment to maximize the number of outer layer sensors which detect the target; (2) non-contact contour following the target by the robot fingers to minimize target escape potential; and (3) closing to rigidize the target including dynamically re-adjusting the end effector finger alignment to compensate for target motion. A signal conditioning circuit and gain adjustment means are included to maintain the dynamic range of low power reflection signals
Universality of Long-Range Correlations in Expansion-Randomization Systems
We study the stochastic dynamics of sequences evolving by single site
mutations, segmental duplications, deletions, and random insertions. These
processes are relevant for the evolution of genomic DNA. They define a
universality class of non-equilibrium 1D expansion-randomization systems with
generic stationary long-range correlations in a regime of growing sequence
length. We obtain explicitly the two-point correlation function of the sequence
composition and the distribution function of the composition bias in sequences
of finite length. The characteristic exponent of these quantities is
determined by the ratio of two effective rates, which are explicitly calculated
for several specific sequence evolution dynamics of the universality class.
Depending on the value of , we find two different scaling regimes, which
are distinguished by the detectability of the initial composition bias. All
analytic results are accurately verified by numerical simulations. We also
discuss the non-stationary build-up and decay of correlations, as well as more
complex evolutionary scenarios, where the rates of the processes vary in time.
Our findings provide a possible example for the emergence of universality in
molecular biology.Comment: 23 pages, 15 figure
Nuclear Three-body Force Effect on a Kaon Condensate in Neutron Star Matter
We explore the effects of a microscopic nuclear three-body force on the
threshold baryon density for kaon condensation in chemical equilibrium neutron
star matter and on the composition of the kaon condensed phase in the framework
of the Brueckner-Hartree-Fock approach. Our results show that the nuclear
three-body force affects strongly the high-density behavior of nuclear symmetry
energy and consequently reduces considerably the critical density for kaon
condensation provided that the proton strangeness content is not very large.
The dependence of the threshold density on the symmetry energy becomes weaker
as the proton strangeness content increases. The kaon condensed phase of
neutron star matter turns out to be proton-rich instead of neutron-rich. The
three-body force has an important influence on the composition of the kaon
condensed phase. Inclusion of the three-body force contribution in the nuclear
symmetry energy results in a significant reduction of the proton and kaon
fractions in the kaon condensed phase which is more proton-rich in the case of
no three-body force. Our results are compared to other theoretical predictions
by adopting different models for the nuclear symmetry energy. The possible
implications of our results for the neutron star structure are also briefly
discussed.Comment: 15 pages, 5 figure
Ferromagnetism in Fe-doped Ba6Ge25 Chiral Clathrate
We have successfully synthesized a Ba6Ge25 clathrate, substituting 3 Fe per
formula unit by Ge. This chiral clathrate has Ge sites forming a framework of
closed cages and helical tunnel networks. Fe atoms randomly occupy these sites,
and exhibit high-spin magnetic moments. A ferromagnetic transition is observed
with Tc = 170 K, the highest observed Tc for a magnetic clathrate. However, the
magnetic phase is significantly disordered, and exhibits a transformation to a
re-entrant spin glass phase. This system has a number of features in common
with other dilute magnetic semiconductors.Comment: Submitted to Applied Physics Letters. Fig. 1 resolution reduced for
online archive versio
- âŠ