21,292 research outputs found
Frequency-domain study of relaxation in a spin glass model for the structural glass transition
We have computed the time-dependent susceptibility for the finite-size
mean-field Random Orthogonal model (ROM). We find that for temperatures above
the mode-coupling temperature the imaginary part of the susceptibility
obeys the scaling forms proposed for glass-forming liquids.
Furthermore, as the temperature is lowered the peak frequency of
decreases following a Vogel-Fulcher law with a critical temperature remarkably
close to the known critical temperature where the configurational entropy
vanishes.Comment: 7 pages, 4 figures, epl LaTeX packag
ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic
It is well known that apps running on mobile devices extensively track and
leak users' personally identifiable information (PII); however, these users
have little visibility into PII leaked through the network traffic generated by
their devices, and have poor control over how, when and where that traffic is
sent and handled by third parties. In this paper, we present the design,
implementation, and evaluation of ReCon: a cross-platform system that reveals
PII leaks and gives users control over them without requiring any special
privileges or custom OSes. ReCon leverages machine learning to reveal potential
PII leaks by inspecting network traffic, and provides a visualization tool to
empower users with the ability to control these leaks via blocking or
substitution of PII. We evaluate ReCon's effectiveness with measurements from
controlled experiments using leaks from the 100 most popular iOS, Android, and
Windows Phone apps, and via an IRB-approved user study with 92 participants. We
show that ReCon is accurate, efficient, and identifies a wider range of PII
than previous approaches.Comment: Please use MobiSys version when referencing this work:
http://dl.acm.org/citation.cfm?id=2906392. 18 pages, recon.meddle.mob
Prediction of hydrocarbon reservoirs within coal-bearing formations
This paper presents a case study on the prediction of hydrocarbon reservoirs within coal-bearing formations of the Upper Palaeozoic. The target reservoirs are low-permeability low-pressure tight-sandstone reservoirs in the Daniudi Gas Field, Ordos Basin, China. The prime difficulty in reservoir prediction is caused by the interbedding coal seams within the formations, which generate low-frequency strong-amplitude reflections in seismic profiles. To tackle this difficulty, first, we undertook a careful analysis regarding the stratigraphy and lithology of these coal-bearing formations within the study area. Then, we conducted a geostatistical inversion using 3D seismic data and obtained reservoir parameters including seismic impedance, gamma ray, porosity and density. Finally, we carried out a reservoir prediction in the coal-bearing formations, based on the reservoir parameters obtained from geostatistical inversion and combined with petrophysical analysis results. The prediction result is accurately matched with the actual gas-test data for the targeted four segments of the coal-bearing formations
Magnetic and electron transport properties of the rare-earth cobaltates, La0.7-xLnxCa0.3CoO3 (Ln = Pr, Nd, Gd and Dy) : A case of phase separation
Magnetic and electrical properties of four series of rare earth cobaltates of
the formula La0.7-xLnxCa0.3CoO3 with Ln = Pr, Nd, Gd and Dy have been
investigated. Compositions close to x = 0.0 contain large ferromagnetic
clusters or domains, and show Brillouin-like behaviour of the field-cooled DC
magnetization data with fairly high ferromagnetic Tc values, besides low
electrical resistivities with near-zero temperature coefficients. The
zero-field-cooled data generally show a non-monotonic behaviour with a peak at
a temperatures slightly lower than Tc. The near x = 0.0 compositions show a
prominent peak corresponding to the Tc in the AC-susceptibility data. The
ferromagnetic Tc varies linearly with x or the average radius of the A-site
cations, (rA). With increase in x or decrease in (rA), the magnetization value
at any given temperature decreases markedly and the AC-susceptibility
measurements show a prominent transition arising from small magnetic clusters
with some characteristics of a spin-glass. Electrical resistivity increases
with increase in x, showed a significant increase around a critical value of x
or (rA), at which composition the small clusters also begin to dominate. These
properties can be understood in terms of a phase separation scenario wherein
large magnetic clusters give way to smaller ones with increase in x, with both
types of clusters being present in certain compositions. The changes in
magnetic and electrical properties occur parallely since the large
ferromagnetic clusters are hole-rich and the small clusters are hole-poor.
Variable-range hopping seems to occur at low temperatures in these cobaltates.Comment: 23 pages including figure
Interdiffusion: A probe of vacancy diffusion in III-V materials
Copyright 1997 by the American Physical Society. Article is available at
Chaotic hysteresis in an adiabatically oscillating double well
We consider the motion of a damped particle in a potential oscillating slowly
between a simple and a double well. The system displays hysteresis effects
which can be of periodic or chaotic type. We explain this behaviour by
computing an analytic expression of a Poincar'e map.Comment: 4 pages RevTeX, 3 PS figs, uses psfig.sty. Submitted to Phys. Rev.
Letters. PS file also available at
http://dpwww.epfl.ch/instituts/ipt/berglund.htm
Equilibrium Properties of Temporally Asymmetric Hebbian Plasticity
A theory of temporally asymmetric Hebb (TAH) rules which depress or
potentiate synapses depending upon whether the postsynaptic cell fires before
or after the presynaptic one is presented. Using the Fokker-Planck formalism,
we show that the equilibrium synaptic distribution induced by such rules is
highly sensitive to the manner in which bounds on the allowed range of synaptic
values are imposed. In a biologically plausible multiplicative model, we find
that the synapses in asynchronous networks reach a distribution that is
invariant to the firing rates of either the pre- or post-synaptic cells. When
these cells are temporally correlated, the synaptic strength varies smoothly
with the degree and phase of synchrony between the cells.Comment: 3 figures, minor corrections of equations and tex
Theory of Hysteresis Loop in Ferromagnets
We consider three mechanisms of hysteresis phenomena in alternating magnetic
field: the domain wall motion in a random medium, the nucleation and the
retardation of magnetization due to slow (critical) fluctuations. We construct
quantitative theory for all these processes. The hysteresis is characterized by
two dynamic threshold fields, by coercive field and by the so-called reversal
field. Their ratios to the static threshold field is shown to be function of
two dimensionless variables constituted from the frequency and amplitude of the
ac field as well as from some characteristics of the magnet. The area and the
shape of the hysteresis loop are found. We consider different limiting cases in
which power dependencies are valid. Numerical simulations show the domain wall
formation and propagation and confirm the main theoretical predictions. Theory
is compared with available experimental data.Comment: RevTex, 13 pages, 8 figures (PostScript), acknowledgements adde
- …